Determination of organic contaminant concentration  on the silica surface by lateral force microscopy
N.A. Ivliev, V.A. Kolpakov, S.V. Krichevskiy


Image Processing Systems Institute оf RAS, – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

Full text of article: Russian language.


We present a method for determining the concentration of organic contaminants on the silica surface by using lateral force maps and surface topology images obtained with scanning probe microscopy. In this study, we optimized the scanning frequency to increase the contrast of images and facilitate interpretation of the data obtained. We also proved experimentally that the sensitivity of the method reaches 10−11 g/cm2.

concentration of organic contaminants, lateral force.

Ivliev NA, Kolpakov VA, Krichevsky SV. Determination of organic contaminants concentration on the silica surface by lateral force microscopy. Computer Optics 2016; 40(6): 837-843. DOI: 10.18287/2412-6179-2016-40-6-837-843.


  1. Rochat N, Olivier M, Chabli A, Conne F, Lefeuvre G, Boll-Burdet C. Multiple internal reflection infrared spectroscopy using two-prism coupling geometry: A convenient way for quantitative study of organic contamination on silicon wafers. Applied Physics Letters 2000; 77(14): 2249-2251. DOI: 10.1063/1.1314885.
  2. New ISO Draft Standard Classifies Surface Particle Cleanliness. Journal of the IEST 2007; 50(2): 1-4. DOI: 10.17764/jiet.50.2.d622juj1548x2485.
  3. Zhang X, Chae J. wireless and passive wafer cleanliness monitoring unit via electromagnetic coupling for semiconductor/MEMS manufacturing facilities. Sensors and Actuators A: Physical 2011; 171(2): 414-420. DOI: 10.1016/j.sna.2011.08.005.
  4. Kazanskiy NL, Karpeev SV, Kolpakov VA, Krichevsky SV, Ivliev NA. Interaction of dielectric substrates in the course of tribometric assessment of the surface cleanliness. Optical Memory and Neural Networks 2008; 17(1): 37-42. DOI: 10.1007/s12005-008-1006-6.
  5. Kazanskiy NL, Kolpakov VA, Kolpakov AI, Krichevsky SV, Ivliev NA, Desjatov MV. Parameter optimization of a tribometric device for rapid assessment of substrate surface cleanliness. Optical Memory and Neural Networks 2008 17(2): 167-172. DOI: 10.3103/S1060992X08020112.
  6. Goddard J, Mandal S, Erickson D. Optically resonant nanophotonic devices for label-free biomolecular detection. In: Fan X, ed. Advanced photonic structures for biological and chemical detection integrated analytical systems. New York: Springer; 2009. DOI: 10.1007/978-0-387-98063-8.
  7. Lin MC, Wang MQ, Lai J, Huang R, Weng CM, Liao JH, Tang JS, Weng CH, Lu W, Chen HW, Lee JTC. Metal hard mask employed Cu/Low k film post ash and wet clean process optimization and integration into 65 nm manufacturing flow. Solid State Phenomena 2007; 134: 359-362. DOI: 10.4028/
  8. Liu YJ, Waugh DM, Yu HZ. Impact of Organic Contamination on the Electrical Properties of Hydrogen-Terminated Silicon under Ambient Conditions. Applied Physics Letters 2002; 81(26): 4967-4969. DOI: 10.1063/1.1532758.
  9. Alberici S, Dellafiore A, Manzo G, Santospirito G, Villa CM, Zanotti L. Organic contamination study for adhesion enhancement between final passivation surface and packaging molding compound. Microelectronic Engineering. 2004; 76(1-4): 227-34. DOI: 10.1016/j.mee.2004.07.040.
  10. Khanna VK. Adhesion–delamination phenomena at the surfaces and interfaces in microelectronics and MEMS structures and packaged devices. Journal of Physics D: Applied Physics 2011; 44(3): 1-19. DOI: 10.1088/0022-3727/44/3/034004.
  11. Kim KS, Kim JY, Kang HB, Lee BY, Park SM. Effects of organic contaminants during metal oxide semiconductor processes. Journal of the Electrochemical Society 2008; 155(6): H426-H431. DOI: 10.1149/1.2904453.
  12. Guan JJ, Gale GW, Bennett J. Effects of wet chemistry pre-gate clean strategies on the organic contamination of gate oxides for metal-oxide-semiconductor field effect transistor. Japanese Journal of Applied Physics 2000; 39(7A): 3947-3954. DOI: 10.1143/JJAP.39.3947.
  13. Saga K, Hattori T. Identification and removal of trace organic contamination on silicon wafers stored in plastic boxes. Journal of the Electrochemical Society 1996; 143(10): 3279-3284. DOI: 10.1149/1.1837198.
  14. Reinhardt KA, Kern W. Handbook of silicon wafer cleaning technology. 2nd ed. Norwich: William Andrew; 2008. ISBN: 978-0-8155-1554-8.
  15. Chia VKF. Process tool cleanliness for clean manufacturing. Advanced Semiconductor Manufacturing Conference. 2010. DOI: 10.1109/ASMC.2010.5551422.
  16. Endo M, Yoshida H, Maeda Y, Miyamoto N, Niwano M. Infrared monitoring system for the detection of organic contamination on a 300 mm Si wafer. Applied Physics Letters 1999; 75(4): 519-521. DOI: 10.1063/1.124434.
  17. Liu Y, Wu T, Evans DF. Lateral force microscopy study on the shear properties of self-assembled monolayers of dialkylammonium surfactant on mica. Langmuir 1994; 10(7): 2241-2245. DOI: 10.1021/la00019a035.
  18. Guo YB, Wang DG, Zhang SW. Adhesion and Friction of Nanoparticles/Polyelectrolyte Multilayer Films by AFM and Micro-Tribometer. Tribology International 2011; 44(7-8): 906-917. DOI: 10.1016/j.triboint.2011.03.007.
  19. Kolpakov VA, Ivliev NA. Measuring the surface purity of substrates by the tribometry method. Instruments and Experimental Techniques 2014; 57(5): 640-645. DOI: 10.1134/S0020441214040174.
  20. Volkenstein MV. Molecular Biophysics. New York: Academic Press, Inc; 1977.
  21. Glinka NL. General chemistry. 3rd ed. Moscow: "Mir" Publisher, 1981.
  22. Kim DK, Park YK, Biswas S, Lee C. Removal efficiency of organic contaminants on Si wafer surfaces by the N2O ECR plasma technique. Materials Chemistry and Physics 2005; 91(2-3): 490-493. DOI: 10.1016/j.matchem­phys.2004.12.015.
  23. Habuka H., Naito T., Kawahara N. Molecular interaction radii and rate constants for clarifying organic compound physisorption on silicon surface. Journal of the Electrochemical Society 2010; 157(11): H1014-H1018. DOI: 10.1149/1.3489364.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail:; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20