Surface modification of silica glass by pulses of a picosecond laser
M.A. Zavyalova


Technological Design Institute of Scientific Instrument Engineering,
Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Full text of article: Russian language.


An experimental laser system for studying the processes of micro– and nanostructure direct formation in a silica glass by picosecond laser pulses is described. A method of ablation monitoring based on the Shack-Hartmann wavefront sensor is proposed. Ablation craters on the surface of the silica glass varying in depth from 23 ± 4 to 144 ± 18 nm with good edge quality with the power density varying from 0.57 × 1012 to 31 × 1012 W/cm2, respectively, are synthesized. Higher-intensity modes of laser processing lead to the formation of cracks and chips on the surface of the material, with lower-intensity processing leading to the appearance of melting edges. The obtained structures are characterized using an atomic force microscope. The ablation rate of the silica glass is established.

laser ablation, nanostructure, a silica glass, picosecond laser pulses, Shack-Hartmann wavefront sensor.

Zavyalova MA. Surface modification of silica glass by pulses of a picosecond laser. Computer Optics 2016; 40(6): 863-870. DOI: 10.18287/2412-6179-2016-40-6-863-870.


  1. Phillips KC, Gandhi HH, Mazur E, Sundaram SK. Ultrafast laser processing of materials: a review. Advances in Optics and Photonics 2015; 7(4): 684-712. DOI: 10.1364/AOP.7.000684.
  2. Bulgakova NM, Stoyan R, Rosenfeld A. Laser-induced modification of transparent crystals and glasses [In Russian]. Quantum Electron 2010; 40(11): 966-985. DOI: 10.1070/QE2010v040n11ABEH014445.
  3. Kononenko VV, Pashinin VP, Komlenok MS, Konov VI. Modification of silica glass by laser pulses of femtosecond duration [In Russian]. Computer optics 2009; 33(3): 254-260.
  4. Dostovalov АV, Korolkov VP, Babin SA. Simultaneous formation of weakly and highly ordered laser-induced periodic surface structures on Ti film at femtosecond irradiation. Laser Phys Lett 2015; 12(3): 036101. DOI: 10.1088/1612-2011/12/3/036101.
  5. Veiko VP, Dyshlovenko SS. Laser microstructure of surfaces [In Russian]. Scientific and technical journal of information technologies, mechanics and optics 2001; 4: 119-128.
  6. Bulushev E, Bessmeltsev V, Dostovalov A, Goloshevsky N, Wolf A. High-speed and crack-free direct-writing of microchannels on glass by an IR femtosecond laser. Optics and Lasers in Engineering 2016; 79: 39-47. DOI: 10.1016/j.optlaseng.2015.11.004.
  7. Christensen M, Byskov J, Christensen B, Balling P. Single-shot ablation of sapphire by ultrashort laser pulses. Applied Physics A 2010; 101(2): 279-282. DOI: 10.1007/s00339-010-5817-7.
  8. Dausinger F, Dausinger F, Hugel H, Konov VI. Micro-machining with ultrashort laser pulses: From basic understanding to technical applications. Proc SPIE 2003; 5147: 106-115. DOI: 10.1117/12.537496.
  9. Poleshchuk AG, Korolkov VP, Nasyrov RK. Diffractive optical elements: fabrication and application. Proc SPIE 2014; 9283: 928302. DOI:10.1117/12.2073301.
  10. Bessmeltsev VP, Bulushev ED. Optimization of laser micromachining regimes. Optoelectronics, instrumentation and data processing 2014; 50(6): 533-548. DOI: 10.3103/S8756699014060016.
  11. Zavestovskaya IN, Krokhin ON, Men’kova NA. Analysis of the nonlinear absorption mechanisms of light absorption during irradiation of dielectrics and wide-gap semiconductors laser pulses of femtosecond duration [In Russian]. Scientific session MIPhI – 2008. Plasma physics and controlled thermonuclear fusion. Laser physics. Photonics and information optics. Physics of condensed matter 2008; 2: 121-123.
  12. Molian P, Pecholt B, Gupta S. Picosecond Pulsed Laser Ablation and Micromachining of 4H–SiC Wafers. Applied Surface Science 2009; 255(8): 4515-4520. DOI: 10.1016/j.apsusc.2008.11.071.
  13. Dausinger F, Hugel H, Konov V. Micro-machining with ultrashort laser pulses: From basic understanding to technical applications. Proc SPIE 2003; 5147: 106-115. DOI: 10.1117/12.537496.
  14. Bachmann F, Muller J, Klimt B, Knappe R. Micromachining materials by picosecond lasers [In Russian]. Photonics 2013; 1(37): 34-40.
  15. Bykovsky NE, Senatskiy YV, Zavedeev EV, Ralchenko VG. Changes in the surface structure of the YAG crystal by action of nanosecond pulses of of broadband laser radiation: morphology of craters and deformation material [In Russian]. 11-th International Conference "Interaction of radiation with solids", September 23-25, 2015 Minsk, Belarus: 39-41.
  16. Chernonozhkin SM, Saprykin AI. Ablation features of glass and steel and their effect on LA-ICP-MS analysis results [In Russian]. Analysis and control 2011; 15(4): 413-420.
  17. Votyakov SL, Adamovich NN. On On the laser evaporation processes and the usage of calibration solutions for analysis of some minerals by laser ablation mass-spectrometry [In Russian] // Lithosphere 2011; 4: 56-69.
  18. Bulgakova NM. The study of the dynamics and mechanisms of laser ablation in modes milli, nano- and femtosecond pulses [In Russian]. The dissertation on competition of a scientific degree of the doctor of physical and mathematical sciences. Novosibirsk: 2012.
  19. Glagolev SP. Quartz glass: its properties, manufacture and application [In Russian]. Moscow: ONTI, “State chemical-technical” Publisher; 1934.
  20. Delone NB. Nonlinear optics [In Russian]. Moscow: “Fizmatlit” Publisher; 2003.
  21. Born M, Wolf E. Principles of optics. 4th ed. Oxford, New York: Pergamon Press; 1973.
  22. Machulka GA. Laser processing of glass [In Russian]. Moscow: “Soviet Radio” Publisher; 1979.
  23. Klimentov SM, Garnov SB, Konov VI, Kononenko PA, Pivovarov OG, Zar`kova OG, Bratling D, Dausinger F. The role of low-threshold breakdown of air in ablation of materials by short laser pulses [In Russian]. Proceedings of General physics Institute Prokhorov AM 2004; 60: 13-17.
  24. Kononenko TV, Kononenko VV, Konov VI, Pimenov SM, Garnov SV, Tishchenko AV, Prokhorov AM, Khomich AV. Formation of antireflective surface structures on diamond films by laser patterning [In Russian]. Appl Phys A 1999; 68(1): 99-102. DOI: 10.1007/s003390050860.
  25. Kononenko VV, Kononenko TV, Konov VI, Pimenov SM, Garnov SV, Tishchenko AV, Prokhorov AM, Khomich AV. Creation of antireflecting structures on the surfaces of diamond films by laser drawing method [In Russian]. Quantum Electronics 1999; 29(2): 158-162.
  26. Jackson RG. The latest sensors [In Russian]. Moscow: “Technosphere” Publisher; 2008.
  27. Ruprecht AK, Pruss C, Tiziani HJ, Osten W, Lücke P, Last A, Mohr J, Lehmann P. Confocal microoptical distance-sensor: principle and design. Proc SPIE 2005; 5856: 128-135. DOI: 10.1117/12.612008.
  28. Tiziani HJ, Wegner M, Steudle D. Confocal principle for macro- and microscopic surface and defect analysis. Opt Eng 2000; 39(1): 32-39. DOI: 10.1117/1.602332.
  29. Shpeizman VV, Peschanskay NN. The use of interferometric methods of measuring the magnitude and speed of movement for non-destructive testing of material [In Russian]. Physics of the solid state 2007; 49(7): 1201-1205.
  30. Porter J, Queener H, Lin J, Thorn K, Awwal AAS, eds. Adaptive optics for vision science: principles, practices, design and applications. New York: John Wiley & Sons, Inc; 2006. ISBN: 978-0-471-67941-7.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail:; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20