Generation of high-frequency interference patterns  of evanescent electromagnetic  waves at  Fabry-Perot resonances in dielectric   photonic crystals
  E.A. Kadomina, E.A. Bezus, L.L. Doskolovich
   
  Image Processing Systems  Institute of RAS – Branch of the FSRC “Crystallography and Photonics” RAS  Samara, Russia, 
  Samara National Research University, Samara, Russia
Full text of article: Russian language.
 PDF
  PDF
Abstract:
A diffraction structure  for generating high-frequency interference patterns of evanescent  electromagnetic waves based on the interference of “volume” modes of dielectric  photonic crystals at Fabry-Perot resonances is discussed. For the prediction of  the angular locations of the Fabry-Perot resonances, a simple approach for the  description of diffraction of a plane electromagnetic wave by a finite photonic  crystal is proposed, which is based on the representation of the field inside  the photonic crystal in the form of superposition of two counterpropagating  “volume” modes of the photonic crystal. The results obtained may find an  application in the design of new near-field interference lithography devices. 
Keywords:
photonic crystal, Bloch  surface wave, Fabry-Perot resonance, plasmonic mode, Maxwell’s equations.
Citation:
Kadomina  EA, Bezus EA, Doskolovich LL. Generation of high-frequency interference  patterns of evanescent electromagnetic waves at Fabry-Perot resonances in  dielectric photonic crystals. Computer Optics 2017; 41(3): 322-329. DOI:  10.18287/2412-6179-2017-41-3-322-329.
References:
  - Laux E, Genet C, Skauli T, Ebbesen TW. Plasmonic photon sorters for  spectral and polarimetric imaging. Nature Photonics 2008; 2: 161-164.
- Mahboub O, Palacios S, Genet C,  Garcia-Vidal F, Rodrigo S, Martin-Moreno L, Ebbesen T. Optimization of bull’s  eye structures for transmission enhancement. Opt Express 2010; 18(11): 11292-11299. DOI:  10.1364/OE.18.011292.
- Emadi A, Wu H, de Graaf G, Enoksson  P, Correia JH, Wolffenbuttel R. Linear variable optical filter-based  ultraviolet microspectrometer. Appl Opt 2012; 51(19): 4308-4315. DOI: 10.1364/AO.51.004308.
- Kadomina EA, Bezus EA, Doskolovich LL. Spectrally  selective near-field enhancement in a photonic crystal structure with a  diffraction grating. Computer Optics 2015; 39(4): 462-468. DOI:  10.18287/0134-2452-2015-39-4-462-468.
- Piliarik M, Homola J. Surface  plasmon resonance (SPR) sensors: approaching their limits? Opt Express 2009; 17(19): 16505-16517.  DOI: 10.1364/OE.17.016505.
- Sinibaldi A, Danz N, Descrovi E,  Munzert P, Schulz U, Sonntag F, Dominici L, Michelotti F. Direct comparison of  the performance of Bloch surface wave and surface plasmon polariton sensors. Sensors and Actuators B: Chemical 2012;  174: 292-298. DOI: 10.1016/j.snb.2012.07.015.
- Li Y, Yang T, Pang Z, Du G, Song S,  Han S. Phase-sensitive Bloch surface wave sensor based on variable angle  spectroscopic ellipsometry. Opt  Express 2014; 22(18): 21403-21410. DOI: 10.1364/OE.22.021403.
- Kadomina EA, Bezus EA, Doskolovich  LL. Resonant photonic-crystal structures with a diffraction grating for  refractive index sensing. Computer  Optics 2016; 40(2): 164-172. DOI: 10.18287/2412-6179-2016-40-2-164-172.
- Luo X, Ishihara T. Surface plasmon  resonant interference nanolithography technique. Appl Phys Lett 2004; 84(23): 4780-4782. DOI:  10.1063/1.1760221.
- Liu ZW, Wei QH, Zhang X. Surface  plasmon interference nanolithography. Nano Lett 2006; 5(5): 957-961. DOI: 10.1021/nl0506094.
- Kadomina EA, Bezus EA, Doskolovich  LL. Generation of 1D interference patterns of Bloch surface waves. Tech Phys 2016; 61(9): 1389-1394. DOI:  10.1134/S1063784216090103.
- Murukeshan VM, Chua JK, Tan SK, Lin  QY. Nano-scale three dimensional surface relief features using single exposure  counterpropagating multiple evanescent waves interference phenomenon. Opt Express 2008; 16(18): 13857-13870.  DOI: 10.1364/OE.16.013857.
- Yu L, Barakat E, Sfez T, Hvozdara L,  Francesco JD, Herzig HP. Manipulating  Bloch surface waves in 2D: a platform concept-based flat lens. Light: Science & Applications 2014; 3:  e124-e127. DOI: 10.1038/lsa.2014.5.
- Saldana XI, de la Cruz GG.  Electromagnetic surface waves in semi-infinite superlattices. J Opt Soc Am A 1991; 8(1): 36-40. DOI:  10.1364/JOSAA.8.000036.
- Bezus EA, Doskolovich LL, Bykov DA, Soifer  VA. Phase modulation of  Bloch surface waves with the use of a diffraction microrelief at the boundary  of a one-dimensional photonic crystal. JETP Lett 2014; 99(2): 63-66. DOI: 10.1134/S0021364014020040.
- Dyakonov MI. New type of  electromagnetic wave propaga¬ting at an interface. Sov Phys JETP 1988; 67(4): 714-716.
-   Moharam MG, Pommet DA, Grann EB, Gaylord TK. Stable implementation of the rigorous coupled-wave  analysis for surface-relief gratings: enhanced transmittance matrix approach. J Opt Soc Am A 1995; 12(5): 1077-1086. DOI: 10.1364/JOSAA.12.001077.
  
  
  © 2009, IPSI RAS
  Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20