Processing of thermal  mirror signals under continuous wave excitation
A.V. Kalenskii, A.A. Zvekov, D.R. Nurmuhametov,  O.N. Bulgakova
   
  Kemerovo State  University, Kemerovo, Russia,
Federal Research Center of Coal and Coal Chemistry SB RAS  (Institute of coal chemistry and material science), Kemerovo, Russia
Full text of article: Russian language.
 PDF
  PDF
Abstract:
The  main features of the photothermal mirror signals arising under the continuous  wave excitation were analyzed in terms of a model that takes account of  thermal, mechanical, and diffraction effects. Formulae to describe the initial  slope and stationary value of the signal were derived and compared with the  numerical simulation results. We suggested an approach to processing  the thermal mirror signals  based on exploiting the initial slope and  stationary value. The method was verified using numerical simulation and experimental  results. We compared the method performance with the conventional approach  using thermal mirror signals excited in the luminescent glasses. It was shown  that the developed technique has an essentially lower computational cost, while  offering a comparable level of accuracy. 
Keywords:
photothermal  spectroscopy, photothermal effects, thermal mirror method, phase shift,  experimental results processing.
Citation:
Kalenskii AV, Zvekov AA,  Nurmuhametov DR, Bulgakova ON.  Processing of thermal mirror signals under continuous wave excitation. Computer  Optics 2017; 41(3): 369-376. DOI: 10.18287/2412-6179-2017-41-3-369-376.
References:
  - Bialkowski SE. Photothermal  Spectroscopy Methods for Chemical Analysis. New York: John Wiley & Sons, Inc.; 1996.  ISBN 978-0-471-57467-5.
- Gusev VE, Karabutov AA. Laser optoacoustics. New York: American Institute of Physics; 1992. ISBN:  978-1-563-96036-9.
- Rodrigues TP, Zanuto VS, Cruz RA,  Catunda T, Baesso ML, Astrath NGC, Malacarne LC. Discriminating the role of sample length in  thermal lensing of solids. Opt Lett 2014; 39(13): 4013-4016. DOI:  10.1364/OL.39.004013.
- Liu M, Franko M. Thermal Lens  Spectrometry: Still a Technique on the Horizon? Int J Thermophys 2016; 37(7):  67. DOI: 10.1007/s10765-016-2072-y.
- Aduev BP, Nurmukhametov DR, Furega RI et  al. Light absorption by  formulations based on PETN and aluminum nanoparticles during pulsed laser  irradiation. Russian  Journal of Physical Chemistry B 2014; 8(6): 852-855. DOI:  10.1134/S1990793114110128.
- Aduev BP,  Nurmukhametov DR, Zvekov AA, Nikitin AP, Kalenskii AV. Laser initiation of PETN-based composites with  additives of ultrafine aluminium particles. Combustion, Explosion, and  Shock Waves 2016; 52(6): 713-718. DOI: 10.1134/S0010508216060113.
- Capeloto OA, Lukasievicz GVB, Zanuto  VS, Herculano LS, Souza Filho NE, Novatski A, Malacarne LC, Bialkowski SE,  Baesso ML, Astrath NGC. Pulsed photothermal mirror technique: characterization  of opaque materials. Appl Opt 2014; 53(33): 7985-7991. DOI: 10.1364/AO.53.007985. 
- Lukasievicz GVB, Astrath NGC, Malacarne LC, Herculano LS, Zanuto VS, Baesso ML, Bialkowski SE. Pulsed-laser time-resolved thermal mirror  technique in low-absorbance homogeneous linear elastic materials. Appl Spectr  2013; 67(10): 1111-1116. DOI: 10.1366/13-07068.
- Herculano LS, Lukasievicz GVB, Sehn  E, Caetano W, Pellosi DS, Hioka N, Astrath NGC, Malacarne LC. Photodegradation  in micellar aqueous solutions of erythrosin esters derivatives. Appl Spectr  2015; 69(7): 883-888. DOI: 10.1366/15-07865. 
- Herculano LS, Malacarne LC, Zanuto  VS, Lukasievicz GVB, Capeloto OA, Astrath NGC. Investigation of the photobleaching process of  eosin Y in aqueous solution by thermal lens spectroscopy. J Phys Chem B 2013;  117(6): 1932-1937. DOI: 10.1021/jp3119296.
- Kumar BR, Basheer NS,  Kurian A, Georg SD. Study of concentration-dependent quantum yield of Rhodamine  6G by gold nanoparticles using thermal-lens technique. Appl Phys B 2014;  115(3): 335-342. DOI: 10.1007/s00340-013-5608-x. 
- Shokou? N, Yoose?an J. Selective  determination of Sm (III) in lanthanide mixtures by thermal lens microscopy. J  Industr Eng Chem 2016. 35: 153-157. DOI: 10.1016/j.jiec.2015.12.027.
- Sato F, Malacarne LC, Pedreira PRB,  Belancon MP, Mendes RS, Baesso ML, Astrath NGC, Shen J. Time-resolved thermal  mirror method: A theoretical study. J Appl Phys 2008; 104: 053520. DOI:  10.1063/1.2975997.
- Aduev BP, Nurmukhametov DR, Zvekov  AA, Nikitin AP, Nelyubina NV, Belokurov GM, Kalenskii AV. Determining the  optical properties of light-diffusing systems using a photometric sphere.  Instrum Exp Tech 2015; 58(6): 765-770. DOI:10.1134/S0020441215050012. 
- Aduev BP, Nurmukhametov NR, Kolmykov RP, Nikitin AP, Anan’eva MV, Zvekov  AA, Kalenskii AV. Explosive decomposition of  pentaerythritol tetranitrate pellets containing nickel nanoparticles with  various radii. Russ J Phys Chem B 2016; 10(4): 621-627. DOI:  10.1134/S1990793116040187. 
- Zvekov AA, Kalenskii AV, Aduev BP,  Ananyeva MV. Calculation  of the Optical Properties of Pentaerythritol Tetranitrate-Cobalt Nanoparticle  Composites. J Appl Spectr 2015; 82(2): 213-220. DOI:  10.1007/s10812-015-0088-x. 
- Petruk VG, Ivanov AP, Kvaternyuk SM,  Barun VV. Spectrophotometric method for differentiation of human skin melanoma.  II. Diagnostic characteristics. J Appl Spectr 2016. 83(2): 261-270. DOI: 10.1007/s10812-016-0279-0. 
- Nel’ubina  NV, Pidgirny MP, Bulgakova ON, Zvekov AA, Kalenskii AV. Peculiarities of  spectral measurements of colored suspensions in thick-walled cuvettes. Computer Optics 2016; 40(4): 508-515. DOI: 10.18287/2412-6179-2016-40-4-508-515.
- Kalenskii AV, Zvekov AA, Nikitin AP, Gazenaur NV. Optical properties of composites based on a transparent matrix and copper nanoparticles. Russ Phys J 2016; 59(2): 263-272. DOI:  10.1007/s11182-016-0766-z.
- Sheldon SJ, Knight LV, Thorne JM. Laser-induced thermal lens  effect: a new theoretical model. Appl Opt 1982; 21(9): 1663-1669. DOI:  10.1364/AO.21.001663.
-   Bianchi GS, Zanuto VS, Astrath FBG, Malacarne LC,  Terra AA, Catunda T, Nunes LAO, Jacinto C, Andrade LHC, Lima SM, Baesso ML, Astrath NGC. Resonant  excited state absorption and relaxation mechanisms in Tb3+-doped  calcium aluminosilicate glasses: an investigation by thermal mirror  spectroscopy. Opt Letters 2013; 38(22): 4667-4670. DOI: 10.1364/OL.38.004667.
  
  
  © 2009, IPSI RAS
  Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20