Application of additional input amplitude masks in  schemes of optical image encryption with spatially incoherent illumination
N.N. Evtikhiev, V.V. Krasnov, P.A. Cheremkhin, A.V.  Shifrina
   
  National Research Nuclear University MEPhI, Moscow, Russia
Full text of article: Russian language.
 PDF
  PDF
Abstract:
Application of  additional input amplitude masks in schemes of optical image encryption with spatially  incoherent illumination is proposed. The masks are used for increasing the  signal-to-noise ratio in decrypted images and enhancing the security of  encrypted images. Two kinds of additional input amplitude masks were developed  and tested. The first one is a rectangular grating mask. Its application  results in duplications of the original image spectrum at high spatial  frequencies corresponding to mask’s frequency. The second one is a random mask.  Its application results in the distribution of each component of the original  image spectrum throughout the entire Fourier spectrum. Computer simulations of  optical encryption with spatially incoherent illumination and additional input  amplitude masks were performed. Increase in signal-to-noise ratio of  ? 2 times was achieved, as well as attaining  the enhanced security of the encrypted image. 
Keywords:
optical encryption,  spatially incoherent illumination, amplitude masks, optical convolution.
Citation:
Evtikhiev  NN, Krasnov VV, Cheremkhin PA, Shifrina AV. Application of additional input  amplitude masks in schemes of optical image encryption with spatially  incoherent illumination. Computer Optics 2017; 41(3): 391-398. DOI: 10.18287/2412-6179-2017-41-3-391-398.
References:
  - Refregier P, Javidi B. Optical image  encryption based on input plane and Fourier plane random encoding. Opt Lett  1995; 20(7): 767-769. DOI: 10.1364/OL.20.000767.
- Unnikrishnan G, Joseph J, Singh K.  Optical encryption by double-random phase encoding in the fractional Fourier  domain. Opt Lett 2000; 25(12): 887-889. DOI: 10.1364/OL.29.001584.
- Krasnov VV, Starikov SN, Starikov  RS, Cheremkhin PA. Optical encryption of arrays of binary digits in spatially incoherent  light. Russ Phys J 2016; 58(10): 1394-1401. DOI: 10.1007/s11182-016-0661-7.
- Evtikhiev NN, Starikov SN,  Cheryomkhin PA, Krasnov VV, Rodin VG. Method of optical image coding by time  integration. Proc SPIE 2012; 8429: 84291P. DOI: 10.1117/12.922540.
- Cathey WT, Dowski ER. New paradigm  for imaging systems. Appl Opt 2002; 41(29): 6080-6092. DOI:  10.1364/AO.41.006080.
- Cheremkhin PA, Evtikhiev NN, Krasnov  VV, Rodin VG, Starikov SN. Generation of keys for image optical encryption in  spatially incoherent light aimed at reduction of image decryption error. Proc  of SPIE 2014; 9131, 913125. DOI: 10.1117/12.2052723.
- Li J, Shen L, Pan Y, Li R. Optical  image encryption and hiding based on a modified Mach-Zehnder interferometer.  Optics Express 2014; 22(4): 4849-4860. DOI: 10.1364/OE.22.004849.
- Liu Z, Dai J, Sun X, Liu S. Color  image encryption by using the rotation of color vector in Hartley transform domains.  Optics and Lasers in Engineering 2010; 48(7): 800-805. DOI:  10.1016/j.optlaseng.2010.02.005.
- Barrera JF,  Mira A., Torroba R. Optical encryption and QR codes: Secure and noise-free  information retrieval. Optics Express 2013; 21(5): 5373-5378. DOI: 10.1364/OE.21.005373. 
- Cheremkhin PA, Krasnov VV,  Rodin VG, Starikov RS. QR code optical encryption  using spatially incoherent illumination. Laser Physics Letters 2017; 14(2):  026202. DOI: 10.1088/1612-202X/aa5242.
- Lesem LB, Hirsch PM, Jordan JA. The kinoform: A new wavefront reconstruction  device. IBM J Res Dev 1969; 13(2): 150-155. DOI: 10.1147/rd.132.0150. 
- Kotlyar VV, Khonina SN. Encoding of  optical diffractive elements by  method of local surge of phase [In Russian]. Computer Optics 1999; 19: 54-64. 
- Qu W, Gu H, Tan Q, Jin G. Precise design of two-dimensional  diffractive optical elements for beam shaping. Appl Opt 2015; 54(21): 6521-6525.  DOI: 10.1364/AO.54.006521 
- Khonina SN,  Skidanov RV, Moiseev OY. Airy laser beams generation by binary-coded  diffractive optical elements for microparticles manipulation [In Russian]. Computer  Optics 2009; 33(2):  138-146.
- Rahlves M, Rezem M, Boroz K. Flexible,  fast, and low-cost production process for polymer based diffractive optics. Optics  Express 2015; 23(3): 3614-3622. DOI: 10.1364/OE.23.003614. 
- Janesick J.  Scientific Charge-Coupled Devices. Bellingham, Washington: SPIE Press; 2001. ISBN: 0-8194-3698-4. 
- Arsenin VY, Tikhonov AN. Methods for solving  of incorrect problems [In Russian]. Moscow:  “Nauka” Publisher, 1979.
- Cheremkhin PA, Evtikhiev NN, Krasnov VV, Molodtsov DY, Rodin VG, Shifrina  AV. Application of input amplitude masks in image encryption with spatially  incoherent illumination for increase of decrypted images signal-to-noise ratio.  Proc SPIE 2016; 9889: 988911. DOI: 10.1117/12.2227596.
- Yaroslavsky  LP, Merzliakov YS. Methods of digital holography [In Russian]. Moscow:  “Nauka” Publisher,  1977. 
- Saleh BEA, Teich MC. Fundamentals of  photonics. New York, Chichester, Brisbane, Toronto,   Singapore: John  Wiley & Sons, Inc, 1991. ISBN: 978-0-471-83965-1. 
-   Fienup, JR. Invariant error metrics for image  reconstruction. Appl Opt 1997; 36(32): 8352-8357. DOI: 10.1364/AO.36.008352.
  
  
  © 2009, IPSI RAS
  Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20