Modeling the illuminance distribution in the  detection plane of a spaceborne Offner hyperspectrometer
A.A. Rastorguev, S.I. Kharitonov, N.L. Kazanskiy
   
  Joint Stock  Company "Rocket and Space Center" Progress ", Samara, Russia,
    Image Processing Systems Institute of the Russian Academy of Sciences - Branch  of the FSRS "Crystallography and Photonics" RAS, Samara, Russia, 
   Samara National Research University, Samara, Russia
Full text of article: Russian language.
 PDF
  PDF
Abstract:
The modeling of the  illuminance distribution in the detection plane of an optical scheme composed  of an objective and an Offner spectrometer is conducted. We calculate the  illuminance distribution in the detection plane of the hyperspectrometer in the  geometric optics approximation. The calculations use models of the atmospheric  brightness, earth's surface irradiance, and the spectral transmission of the  atmosphere. 
Keywords:
hyperspectrometer,  Offner scheme, illumination, modeling, spectral atmospheric transmittance.
Citation:
Rastorguev AA, Kharitonov  SI, Kazanskiy NL. Modeling the illuminance distribution in the detection plane  of a spaceborne Offner hyperspectrometer. Computer Optics 2017; 41(3): 399-405. DOI:  10.18287/2412-6179-2017-41-3-399-405.
References:
  - Schowengerdt RA. Remote sensing. Models  and methods of image processing. Orlando, FL, USA: Academic Press, Inc.; 2006. ISBN:  978-0-12369-407-8.
- Classifier of thematic tasks of  assessment of natural resources and the environment, solved using the Earth remote  sensing materials. Revision 7. Irkutsk: Baikal Center LLC Publisher, 2008.
- Mouroulis  P, Sellar RG, Wilson DW, Shea JJ, Green RO. Optical design of a compact imaging  spectrometer for planetary mineralogy. Optical Engineering 2007; 46(6): 063001.  DOI: 10.1117/1.2749499. 
- Mouroulis P, Wilson DW, Maker PD, Muller RE.  Convex grating types for concentric imaging spectrometers. Applied Optics 1998;  37(31): 7200-7208. DOI: 10.1364/AO.37.007200.
- Prieto-Blanco  X, Montero-Orille C, González- Nuñez H, Mouriz MD, Lago EL, de la Fuente R. The  Offner imaging spectrometer in quadrature. Optics Express 2010; 18(12):  12756-12769. DOI: 10.1364/OE.18.012756.
- Prieto-Blanco  X, Montero-Orille C, Couce B, de la Fuente R. Analytical design of an Offner  imaging spectrometer. Optics Express 2006; 14(20): 9156-9168. DOI: 10.1364/OE.14.009156.
- Lee JH,  Jang TS, Yang H-S, Rhee S-W. Optical design of a compact imaging spectrometer  for STSAT3. Journal of the Optical Society of Korea 2008; 12(4): 262-268.
- Lee JH, Lee  CW, Kim YM, Kim JW. Optomechanical design of a compact imaging spectrometer for  a microsatellite STSAT3. Journal of the Optical Society of Korea 2009; 13(2):  193-200.
- Lee JH, Kang KI,  Park JH. A very compact imaging spectrometer for the micro-satellite STSAT3.  International Journal of Remote Sensing 2011; 32(14): 3935-3946. DOI: 10.1080/01431161003801328.
- Lee JH,  Jang TS, Kang KI, Rhee S-W. Flight Model Development of a Compact Imaging  Spectrometer for a Microsatellite STSAT3. ORSE 2010.  DOI: 10.1364/ORSE.2010.OMB3.
- Karpeev SV, Khonina SN, Murdagulov  AR, Petrov MV. Alignment and study of prototypes of the Offner hyperspectrometer  [In Russian]. Vestnik SSAU 2016; 15(1): 197-206. DOI:  10.18287/2412-7329-2016-15-1-197-206. 
- Karpeev SV, Khonina SN, Kharitonov  SI. Study of the diffraction grating on a convex surface as a dispersive element.  Computer Optics 2015; 39(2): 211-217. DOI: 10.18287/0134-2452-2015-39-2-211-217.
- Kazanskiy NL, Kharitonov SI,  Doskolovich LL, Pavelyev AV. Modeling the performance of a spaceborne hyperspectrometer  based on the Offner scheme. Computer Optics 2015; 39(1): 70-76. DOI:  10.18287/0134-2452-2015-39-1-70-76.
- Kazanskiy NL, Kharitonov SI,  Karsakov SI, Khonina SN. Modeling action of a hyperspectrometer based on the Offner  scheme within geometric optics. Computer Optics 2014; 38(2): 271-280.
- Schroeder G, Traiber H. Technical  optics: translated from germ. Ilinsky RE.   Moscow: “Technosphere” Publisher; 2006.
- Slyusarev GG. Methods of calculating  optical systems. Leningrad: “Mashinostroenie” Publisher; 1969. 
-   Vladimirov VS. Equations of mathematical physics.  Moscow: “Nauka” Publisher; 1981.
  
  © 2009, IPSI RAS
  Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20