Object detection in images using morphlet descriptions
  Y.V. Vizilter, V.S. Gorbatsevich, S.V. Sidyakin,  B.V. Vishnyakov
   
  State Research Institute of Aviation Systems  (GosNIIAS), Moscow, Russia
Full text of article: Russian language.
 PDF
  PDF
Abstract:
An  original method for object detection based on morphlet trees is proposed in the  paper. It allows the robust detection of heterogeneous objects in images to be  done without pre-training. Besides, the detection process simultaneously  includes a preliminary segmentation, which can be later used for recognition.  Also, there is another important characteristic: the proposed approach does not  require the use of sliding windows and feature pyramids to detect  different-scale objects. 
Keywords:
mathematical morphology, Pytiev morphology, object detection, morphlets.
Citation:
Vizilter YV, Gorbatsevich  VS,Vishnyakov BV, Sidyakin SV. Object  detection in images using morphlet descriptions, Computer Optics 2017; 41(3): 406-411. DOI:  10.18287/2412-6179-2017-41-3-406-411.
References:
  - Joseph  R, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object  detection. Proc CVPR 2016: 779-788. DOI: 10.1109/CVPR.2016.91. 
- Vizilter YuV, Gorbatsevich VS, Zheltov SYu, Rubis AYu,  Vorotnikov AV. Morphlets: a new class of tree-structured morphological  descriptors of image shape. Computer Optics 2015; 39(1):  101-108. DOI:  10.18287/0134-2452-2015-39-1-101-108. 
- Pytiev Yu, Chulichkov A. Morphological methods for image  analysis [In Russian]. Мoscow:  "Fizmatlit" Publisher, 2010. ISBN: 978-5-9221-1225-3. 
- The PASCAL Visual Object Classes  Challenge 2007. Source: áhttp://host.robots.ox.ac.uk/pascal/VOC/voc2007/ñ. 
- Otsu N. A threshold selection method from gray-level histograms  // IEEE Trans Systems Man and Cybernetics 1979; 9(1): 66-69. DOI: 10.1109/TSMC.1979.4310076. 
- Dalal N, Triggs B. Histogram of oriented  gradients for human detection. CVPR 2005; 1(1): 886-893. DOI: 10.1109/CVPR.2005.177. 
- Hou X, Zhang L. Saliency  detection: A spectral residual approach. Proc CVPR 2007: 1-8. DOI:  10.1109/CVPR.2007.383267.
- Felzenszwalb P, Huttenlocher D.  Efficient graph-based image segmentation. International Journal of  Computer Vision 2004; 59(2): 167-181. DOI:10.1023/B:VISI.0000022288.19776.77.
- Alexe B, Deselaers T, Ferrari V.  Measuring the objectness of image windows. IEEE Trans Pattern Anal Mach Intell  2012; 34(11): 2189-2202. DOI: 10.1109/TPAMI.2012.28.
-   The KITTI Vision  Benchmark Suite. Source: <http://www.cvlibs.net/datasets/ kitti/>. 
  
  © 2009, IPSI RAS
  Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20