Maximum-likelihood dissimilarities in image recognition with deep  neural networks
  A.V. Savchenko
   
  National Research University Higher School of  Economics, Nizhny Novgorod, Russia
Full text of article: Russian language.
 PDF
  PDF
Abstract:
In this paper we focus  on the image recognition problem in the case of a small sample size based on  the nearest neighbor rule and matching high-dimensional feature vectors  extracted with a deep convolutional neural network. We propose a novel  recognition algorithm based on the maximum likelihood method for the joint  density of dissimilarities between the observed image and available instances  in a training set. This likelihood is estimated using the known asymptotically  normally distribution of the Jensen-Shannon divergence between image features,  if the latter can be treated as probability density estimates. This asymptotic  behavior is in agreement with the well-known experimental estimates of the  distributions of dissimilarity distances between the high-dimensional vectors.  The experimental study in unconstrained face recognition for the LFW (Labeled  Faces in the Wild) and YTF (YouTube Faces) datasets demonstrated that the  proposed approach makes it possible to increase the recognition accuracy by  1-5% when compared with conventional classifiers. 
Keywords:
statistical pattern  recognition, image processing, deep convolutional neural networks,  maximum-likelihood directed enumeration method, unconstrained face identification.
Citation:
Savchenko AV. Maximum-likelihood  dissimilarities in image recognition with deep neural networks. Computer Optics  2017; 41(3): 422-430. DOI: 10.18287/2412-6179-2017-41-3-422-430.
References:
  - LeCun Y, Bengio Y, Hinton G. Deep  learning, Nature 2015; 521(7553): 436-444. DOI: 10.1038/nature14539. 
- Prince SJ. Computer vision: models,  learning, and inference. New York: Cambridge University Press; 2012. ISBN: 978-1-107-01179-3. 
- Goodfellow I,  Bengio Y, Courville A. Deep learning (Adaptive computation and machine learning series). Cambridge, London:  MIT Press; 2016. ISBN: 978-0-262-03561-3. 
- Savchenko AV. Search techniques in  intelligent classification systems. Switzerland: Springer International  Publishing; 2016. ISBN 978-3-319-30513-4. 
- Zhao Y, Liu Y, Zhong S, Hua KA. Face  recognition from a single registered image for conference socializing, Expert  Systems with Applications 2015; 42(3): 973-979. DOI: 10.1016/j.eswa.2014.08.016. 
- Raudys SJ, Jain   AK. Small sample size effects in  statistical pattern recognition: Recommendations for practitioners. IEEE  Transactions on Pattern Analysis and Machine Intelligence 1991, 13(3): 252-264.  DOI: 10.1109/34.75512.
- Mokeev VV, Tomilov SV. On solution  of the small sample size problem with linear discriminant analysis in face  recognition [In Russian]. Business-Informatics 2013; 1(23): 37-43.
- Fursov VA, Minayev EYu. Creation  of support subspaces in the fractal image recognition tasks [In Russian]. Proceedings of  International Conference on Information Technology and Nanotechnology (ITNT)  2016: 530-537.
- Fursov VA. Adaptive identification on small  number of observations [In Russian]. Information technologies (Appendix) 2013;  9: 1-32. 
- Lapko AV, Lapko VA, Chentsov SV.  Nonparametric models of pattern recognition under conditions of small samples. Optoelectronics,  Instrumentation and Data Processing 1999; 6: 83-90.
- Savchenko VV. Decision of a small  samples problem on the basis of the information theory of speech perception [In  Russian]. Proceedings of the Russian Universities: Radioelectronics 2008; 5:  33-44.
- Tan X, Chen S,  Zhou ZH, Zhang F. Face recognition from a single image per person: a survey.  Pattern Recognition 2006; 39(9): 1725-1745. DOI: 10.1016/j.patcog.2006.03.013.
- Bertinetto L, Henriques JF, Valmadre  J, Torr P, Vedaldi A. Learning feed-forward one-shot learners. Advances in  Neural Information Processing Systems 29 (NIPS-2016) 2016: 523-531.
- Parkhi OM, Vedaldi A, Zisserman A.  Deep face recognition. Proceedings of the British Machine Vision 2015: 6-17. 
- Liu J, Deng Y,  Huang C. Targeting ultimate accuracy: Face recognition via deep embedding. arXiv preprint  arXiv:1506.07310 2015.
- Szegedy C, Liu  W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A.  Going deeper with convolutions. Proceedings of the  IEEE International Conference on Computer Vision  and Pattern Recognition (CVPR) 2015: 1-9. DOI: 10.1109/CVPR.2015.7298594. 
- Russakovsky O, Deng J, Su H, Krause  J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Li  FF. Imagenet large scale visual recognition challenge. International Journal of  Computer Vision 2015; 115(3): 211-252. DOI: 10.1007/s11263-015-0816-y. 
- Taigman Y, Yang M, Ranzato M, Wolf  L. DeepFace: Closing the gap to human-level performance in face verification.  Proceedings of the IEEE International Conference on Computer Vision and Pattern  Recognition (CVPR) 2014: 1701-1708. DOI:  10.1109/CVPR.2014.220.
- Savchenko AV. Maximum-Likelihood  Approximate Nearest Neighbor Method in Real-time Image Recognition, Pattern  Recognition 2017; 61: 459-469. DOI: 10.1016/j.patcog.2016.08.015. 
- Savchenko AV. The maximal likelihood  enumeration method for the problem of classifying piecewise regular objects.  Automation and Remote Control 2016; 77(3): 443-450. DOI:  10.1134/S0005117916030061. 
- Savchenko AV, Belova NS.  Statistical testing of segment homogeneity in classification of  piecewise-regular objects, International Journal of Applied Mathematics and Computer  Science 2015; 25(4): 915-925. DOI: 10.1515/amcs-2015-0065. 
- Dalal N, Triggs B. Histograms of  oriented gradients for human detection. Proceedings of the IEEE International  Conference on Computer Vision and Pattern Recognition (CVPR) 2005: 886-893. DOI:  10.1109/CVPR.2005.177. 
- Lowe D.  Distinctive image features from scale-invariant keypoints. International  Journal of Computer Vision 2004; 60(2): 91-110. DOI:  10.1023/B:VISI.0000029664.99615.94.
- Ahonen T, Hadid A, Pietikainen M.  Face recognition with local binary patterns. Proceedings of the European Conference  on Computer Vision (ECCV 2004) 2004: 469-481. DOI:  10.1007/978-3-540-24670-1_36. 
- Savchenko AV. Image recognition on  the basis of probabilistic neural network with homogeneity testing [In Russian].  Computer Optics 2013; 37(2): 254-262.
- Kullback  S. Information Theory  and Statistics. Mineola, New York: Dover Publications, Inc.; 1997.  ISBN: 978-0-486-69684-7. 
- Burghouts GJ, Smeulders AWM,  Geusebroek J-M. The distribution family of similarity distances. Proceedings of the 20th International Conference  on Neural Information Processing Systems (NIPS’07) 2007: 201-208. 
- Best-Rowden L, Han H, Otto C, Klare  BF, Jain AK.  Unconstrained face recognition: identifying a person of interest from a media  collection. IEEE Transactions on Information Forensics and Security 2014; 9(12):  2144-2157. DOI: 10.1109/TIFS.2014.2359577. 
- Wolf L, Hassner T, Maoz I. Face recognition  in unconstrained videos with matched background similarity, Proceedings of the IEEE International Conference on Computer  Vision and Pattern Recognition (CVPR) 2011: 529-534. DOI: 10.1109/CVPR.2011.5995566. 
- Jia Y, Shelhamer E, Donahue J,  Karayev S, Long J, Girshick R, Darrell T. Caffe: Convolutional architecture for  fast feature embedding. Proceedings of the 22nd ACM International  Conference on Multimedia (MM’14) 2014: 675-678. DOI: 10.1145/2647868.2654889. 
- Wu X, He R, Sun Z. A lightened CNN  for deep face representation. arXiv preprint  arXiv:1511.02683v1 2015.
- Yi D, Lei Z, Liao S, Li SZ. Learning  Face Representation from Scratch, arXiv preprint arXiv:1411.7923, 2014.
- Video-based  face recognition software. Source: áhttps://github.com/HSE-asavchenko/HSE_FaceRec/tree/master/src/caffe_modelsñ. 
- Learned-Miller E, Huang GB,  RoyChowdhury A, Li H, Hua G. Labeled faces in the wild: A survey. In book: Kawulok M, Celebi ME, Smolka B, eds. Advances  in Face Detection and Facial Image Analysis. Springer International Publishing Switzerland;  2016: 189-248. DOI:  10.1007/978-3-319-25958-1_8. 
-   Wang H, Wang Y, Cao Y. Video-based  face recognition: a survey. World Academy of Science. Engineering and  Technologies 2009; 60: 293-302.  
  
  © 2009, IPSI RAS
  Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20