Hybrid methods for automatic landscape change  detection in noisy data environment
  A.A. Afanasyev, A.V. Zamyatin
   
  National Research Tomsk  State University, Tomsk, Russia
Full text of article: Russian language.
 PDF
  PDF
Abstract:
We consider most widely  used practical methods for land cover change detection based on remote data  sensing. Based on these methods, approaches to constructing hybrid methods are  proposed. Results of the experimental study of the proposed methods in the  presence of noise of various types and intensities are discussed. Based on the  results of the experiments, hybrid methods that allow one to achieve a better  quality in automatic change detection when compared to the known methods are  determined. 
Keywords:
landscape cover, change  detection, landscape dynamics, change detection hybrid methods, digital image  processing, image analysis, remote sensing and sensors, detection.
Citation:
Afanasyev AA, Zamyatin  AV. Hybrid methods for automatic landscape change detection in noisy data  environment. Computer Optics 2017; 41(3): 431-440. DOI: 10.18287/2412-6179-2017-41-3-431-440.
References:
  - Khandelwal P, Singh KK, Singh BK,  Mehrotra A. Unsupervised change detection of multispectral images using wavelet  fusion and kohonen clustering network. International Journal of Engineering and  Technology 2013; 5(2): 1401-1406. 
- Lu D, Mausel P. Change  detection techniques. International Journal of Remote Sensing 2004; 25(12):  2365-2407. DOI: 10.1080/0143116031000139863.
- Hussain M, Chen D,  Cheng A, Wei H, Stanley D. Change detection from remotely sensed images: from  pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and  Remote Sensing 2013; 80: 91-106. DOI: 10.1016/j.isprsjprs.2013.03.006.
- Lu D, Li G, Moran  E. Current situation and needs of change detection techniques. International Journal  of Image and Data Fusion 2014; 5(1): 13-38. DOI: 10.1080/19479832.2013.868372.
- Collins JB.,  Woodcock CE. An assessment of several linear change detection techniques for  mapping forest mortality using multitemporal Landsat TM data. Remote sensing of  environment 1996; 56(1): 66-77. DOI: 10.1016/0034-4257(95)00233-2.
- Fedoseev V,  Chupshev N. Research of methods for man-made change detection on earth surface  using high resolution satellite image series [In Russian]. Computer Optics  2012; 36(2): 279-288.
- Ridd MK, Liu JA.  Comparison of four algorithms for change detection in an urban environment.  Remote Sens Environ 1998; 63(2): 95-100. DOI: 10.1016/S0034-4257(97)00112-0.
- Singh A. Digital  change detection techniques using remotely sensed data. International Journal  of Remote Sensing 1989; 10(6): 989-1003. DOI: 10.1080/01431168908903939. 
- Vasil’ev KK,  Krasheninnikov VR, Tashlinskii AG. Statistical analysis of multidimensional  image sequences [In Russian]. Naukoemkie tekhnologii 2013; 5: 5-11.
- Jianya G., Haigang  S., Guorui M., Qiming Z. A review of multitemporal remote sensing data change  detection algorithms. The International Archives of the Photogrammetry. Remote  Sensing and Spatial Information Sciences 2008; 37(B7): 757-762.
- Dhakal AS, Amada T,  Aniya M, Sharma RR. Detection of areas associated with flood and erosion caused  by a heavy rainfall using multitemporal Landsat TM data. Photogrammetric  Engineering and Remote Sensing 2002; 68(3): 233-240.
- Yuan D, Elvidge C.  NALC land cover change detection pilot study Washington D.C.  area experiments // Remote Sensing of Environment 1998; 66(2): 166-178. DOI: 10.1016/S0034-4257(98)00068-6.
- Muchoney DM, Haack  BN. Change detection for monitoring forest defoliation. Photogrammetric  Engineering and Remote Sensing 1994; 60(10): 1243-1251.
- Macleod RD, Сongalton RG. A  quantitative comparison of change detection algorithms for monitoring eelgrass  from remotely sensed data. Photogrammetric Engineering and Remote Sensing 1998;  64(3): 207-216.
- Mas J-F. Monitoring  land-cover changes: a comparison of change detection techniques. International  Journal of Remote Sensing 1999; 20(1): 139-152. DOI: 10.1080/014311699213659
- Gong  P. Change detection using principal component analysis and fuzzy set theory.  Canadian Journal of Remote Sensing 1993; 19(1): 22-29. DOI: 10.1080/07038992.1993.10855147
- Du P, Liu S, Gamba  P, Tan K, Xia J. Fusion of difference images for change detection over urban  areas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote  Sensing 2012; 5(4): 1076-1086. DOI: 10.1109/JSTARS.2012.2200879.
- Almutairi A, Warner  TA. Change detection accuracy and image properties: a study using simulated  data. Remote Sensing 2010; 2(6): 1508-1529. DOI: 10.3390/rs2061508.
- Afanasyev AA,  Zamyatin AV. The applicability analysis of the approaches to the identification  of land cover changes by remote sensing data [In Russian]. Informational  Technologies 2014; 4: 38-42.
- Coppin PR, Bauer  ME. Processing of multitemporal Landsat TM imagery to optimize extraction of  forest cover change features. IEEE Transactions on Geoscience and Remote  Sensing 1994; 32(4): 918-927. DOI: 10.1109/36.298020.
- Kauth RJ, Thomas  GS. The Tasselled Cap - A Graphic Description of the Spectral-Temporal  Development of Agricultural Crops as Seen by LANDSAT. LARS Symposia 1976;  41-51.
- Niemeyer I,  Nussbaum S. Change detection: The potential for nuclear safeguards. In Book: Avenhaus R, Kyriakopoulos N, Richard  M, Stein G, eds. Verifying Treaty Compliance. Berlin, Heidelberg:  Springer; 2006: 335-348.
- McDermid G., Linke  J., Pape A.D., Laskin D.N., McLane A.J., Franklin S.E. Object-based approaches  to change analysis and thematic map update: challenges and limitations.  Canadian Journal of Remote Sensing 2008; 34(5): 462-466. DOI: 10.5589/m08-061.
- Al-Khudhairy DHA,  Caravaggi I, Giada S. Structural damage assessments from Ikonos data using  change detection, object-oriented segmentation, and classification techniques.  Photogrammetric Engineering & Remote Sensing 2005; 71(7): 825-837. DOI:  10.14358/PERS.71.7.825.
- Gienko AY, Gienko GA, Govorov MO.  Geo-information and change detection techniques for ecological assessment of  natural resources [In Russian]. Interexpo Geo-Siberia. 2012; 5: 5-11.
- Schowengerdt RA.  Remote sensing: Models and methods for image processing. 3rd Edition.  Orlando, FL:  Academic Press, Inc.; 2006. ISBN: 978-0123694072.
- Radke RJ. Image  change detection algorithms: a systematic survey. IEEE Trans Image Process  2005; 14(3): 294-307. DOI: 10.1109/TIP.2004.838698.
- Dianat R, Kasaei S.  On automatic threshold selection in regression method for change detection in  remote sensing images. Proceedings of the 4th International  Symposium on Telecommunications 2008; 1-6.
- Horne E, Yanni MK.  New approach to dynamic thresholding. EUSIPCO-94: European Conference on Signal  Processing, Edinburg  1994; 1: 34-44.
- Otsu  N. A Threshold selection method from gray-level histograms. IEEE Transactions  on Systems, Man, and Cybernetics 1979; 9(1): 62-63. DOI:  10.1109/TSMC.1979.4310076.
- Kittler J,  Illingworth J. Minimum error thresholding. Pattern Recognition 1986; 19(1):  41-47. DOI: 10.1016/0031-3203(86)90030-0.
- Richards JA,  Xiuping J. Remote sensing digital image analysis: An introduction. Berlin: Springer; 1999. ISBN: 978-3642300615. 
- Ilsever  M, Ünsalan C. Two-dimensional change detection methods. London: Springer; 2012. ISBN: 978-1-4471-4254-6. 
- Pacifici F. Change  detection algorithms: State of the art. Source áhttp://www.disp.uniroma2.it/earth_observation/pdf/CD-Algorithms.pdfñ.
- Sohl T, Terry L. Change analysis in the United    Arab Emirates: an investigation of  techniques. Photogrammetric Engineering and Remote Sensing 1999; 65(4):  475-484.
- Lambin EF.,  Strahlers AH. Change-vector analysis in multitemporal space: A tool to detect  and categorize land-cover change processes using high temporal-resolution satellite  data. Remote Sensing of Environment 1994; 48(2): 231-244. DOI:  10.1016/0034-4257(94)90144-9.
- Shlens J. A  tutorial on principal component analysis Source: áhttp://www.cs.uu.nl/docs/vakken/ddm/texts/Normal/pca.pdf.ñ 
- Benlin  X, Fangfang L, Xingliang M, Huazhong J. Study on independent component  analysis’ application in classification and change detection of multispectral  images. The International Archives of the Photogrammetry, Remote Sensing and  Spatial Information Sciences 2008; 37(B): 871-875. 
- Marchesi S.,  Bruzzone L. ICA and kernel ICA  for change detection in multispectral remote sensing images // Geoscience and  Remote Sensing Symposium 2009; 2: 980-983. DOI: 10.1109/IGARSS.2009.5418265
- Hyvärinen A. Fast  and robust fixed-point algorithms for independent component analysis // IEEE  Transactions on Neural Networks 1999; 10(3): 626-634. DOI: 10.1109/72.761722.
-   Hyvärinen A., Oja E.  Independent component analysis: algorithms and applications. Neural networks  2000; 13(4): 411-430. DOI: 10.1016/S0893-6080(00)00026-5. 
  
  © 2009, IPSI RAS
  Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20