Research of an algorithm for crystal lattice parameter  identification based on the gradient steepest descent method
  A.S. Shirokanev, D.V. Kirsh, A.V. Kupriyanov
   
  Samara  National Research University, Samara, Russia,
 Image Processing Systems Institute оf RAS, – Branch of the  FSRC “Crystallography and Photonics” RAS, Samara, Russia
Full text of article: Russian language.
 PDF
  PDF
Abstract:
In  the analysis of a crystalline substance, the problem of crystal lattice  parameter identification is of a great interest. However, the existing methods  for solving this problem, such as the Bravais cell parameters estimation method  and Wigner-Seitz cell volume estimation method, do not provide the required  level of accuracy. Aiming to address the problem of low identification  accuracy, the paper proposes an algorithm for crystal lattice parameter  identification based on the gradient steepest descent method. The study of the  feasibility of the structure parameter identification is carried out using a  large set of distorted lattices. The results obtained show a significant  increase in the identification accuracy in comparison with the above-mentioned  parameter identification methods. 
Keywords:
parametric  identification, unit cell, crystal lattice, Bravais cell, Wigner-Seitz cell,  gradient steepest descent method.
Citation:
Shirokanev AS, Kirsh DV,  Kupriyanov AV. Research of an algorithm for crystal lattice parameter  identification based on the gradient steepest descent method. Computer Optics  2017; 41(3): 453-460. DOI: 10.18287/2412-6179-2017-41-3-453-460.
References:
  - Fursov VA, Goshin YeV. Information  technology for digital terrain model reconstruction from stereo images [In  Russian]. Computer Optics 2014; 38(2): 335-342. 
- Kotov AP, Fursov VA, Goshin YeV.  Technology for fast 3D-scene reconstruction from stereo images [In Russian].  Computer Optics 2015; 39(4): 600-605. DOI:  10.18287/0134-2452-2015-39-4-600-605.
- Kudinov IA, Pavlov OV, Kholopov IS.  Implementation of an algorithm for determining the spatial coordinates and the  angular orientation of an object based on reference marks, using information  from a single camera [In Russian]. Computer Optics 2015; 39(3): 413-419. DOI:  10.18287/0134-2452-2015-39-3-413-419. 
- Bessmeltsev VP, Bulushev ED. Fast  image registration algorithm for automated inspection of laser micromachining  [In Russian]. Computer Optics 2014; 38(2): 343-350.
- Shirokanev AS, Kirsh DV, Kupriyanov AV. Researching  methods of reconstruction of three-dimensional crystal lattice from images of  projections. CEUR Workshop Proceedings 2015; 1490: 290-297. DOI:  10.18287/1613-0073-2015-1490-290-297.
- Kharitonov SI, Volotovskiy SG,  Khonina SN, Kazanskiy NL. A differential method for calculating X-ray diffraction  on crystals: the scalar theory [In Russian]. Computer Optics 2015; 39(4):  469-479. DOI: 10.18287/0134-2452-2015-39-4-469-479.
- Egerton  RF. Physical principles of electron microscopy [In Russian]. Мoscow: “Tehnosfera” Publisher; 2010.  ISBN: 978-5-94836-254-0. 
- Kupriyanov  AV. The observability of the crystal lattice by multiple nodes upon the images  of their projections [In Russian]. Computer Optics 2012; 36(4): 586-589. 
- Shaskolskaya MP. Crystallography:  Manual for institutes of higher education [In Russian]. Moscow: "Higher  School" Publisher; 1984.
- Kirsh DV, Kupriyanov AV. Estimating  the similarity measure of crystal lattices by coordinates of their nodes in  three-dimensional space [In Russian]. Computer Optics 2012; 36(4): 590-595.
- Kupriyanov AV, Kirsh DV. Estimation of the  crystal lattice similarity measure by three-dimensional coordinates of lattice  nodes. Optical Memory & Neural Networks (Information Optics)  2015; 24(2): 145-151. DOI: 10.3103/S1060992X15020101.
- Kirsh DV, Kupriyanov AV. Crystal lattice identification by  coordinates of their nodes in three dimensional space // Pattern recognition  and image analysis 2015; 25(3): 456-460. DOI: 10.1134/S1054661815030116.
- Kirsh DV, Kupriyanov AV. Identification of three-dimensional crystal lattices by  estimation of their unit cell parameters // CEUR Workshop Proceedings 2015:  40-45.
- Soldatova OP, Lyozin IA, Lyozina IV,  Kupriyanov AV, Kirsh DV. Application of fuzzy neural networks for defining  crystal lattice types in nanoscale images [In Russian]. Computer  Optics 2015; 39(5): 787-794. DOI:  10.18287/0134-2452-2015-39-5-787-794.
- Kirsh DV, Kupriyanov AV. Modeling and identification of  centered crystal lattices in three-dimensional space // Information Technology  and Nanotechnology (ITNT-2015) 2015: 162-170.
- Hammond C. The basic of  crystallography and diffraction. 3rd Ed. New York: Oxford University  Press Inc.; 2009. ISBN: 978-0-19-954645-9.
- Brandon D, Kaplan WD.  Microstructural Characterization of Materials. New York: John Wiley & Sons;  1999. ISBN: 0-471-98502-3.
- Andrews LC, Bernstein HJ. Lattices  and reduced cells as points in 6-space and selection of Bravais lattice type by  projections. Acta Cryst Sect A 1988; 44(6): 1009-1018. DOI:  10.1107/S0108767388006427.
- Kessler E, Henins A, Deslattes R,  Nielsen L, Arif M. Precision comparison of the lattice parameters of silicon  monocrystals. J Res Natl Inst Stand Technol 1994; 99(1): 1-18.
- Smith WF, Hashemi J. Foundations of  Materials Science and Engineering. 3rd ed. Boston, London:  McGraw-Hill Publishing Company; 2004. ISBN: 0-072-40233-4.
- Patera J, Skala V. Centered cubic  lattice method comparison. Proceedings of Algoritmy 2005: 309-318.
- Shirokanev AS, Kirsh DV, Kupriyanov  AV. Application of gradient steepest descent method to the problem of crystal  lattice parametric identification. CEUR Workshop Proceedings 2016; 1638:  393-400. DOI: 10.18287/1613-0073-2016-1638-393-400.
-   Shirokanev AS, Kirsh DV, Kupriyanov AV. Development of the crystal  lattice parameter identification method based on the gradient steepest descent  method. Computer Science Research Notes 2016; 2603: 65-68. 
  
  © 2009, IPSI RAS
  Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20