Polarization and topological mode dispersion of optical vortices in circular optical fibers
Barshak E.V., Yavorsky M.A., Vikulin D.V., Lapin B.P., Volyar A.V., Alexeyev C.N.


V.I. Vernadsky Crimean Federal University, Simferopol, Russia


In this paper we investigated a problem of intermode dispersion within a group of optical vortices with an azimuthal number greater than or equal to 1 in circular optical fibers. It was established that, while there is no dispersion between optical vortices with topological charge ± 1,   both standard polarization mode dispersion and a new-form topological mode dispersion occurred between optical vortices with the topological charge greater than 1. The dependence of the dispersion of optical vortices on the wavelength for the gradient and step-index fibers with variable parameters was numerically obtained and analyzed. A feasibility of zero mode dispersion in step-index fibers was established.

optical vortices, polarization mode dispersion, topological mode dispersion, optical fibers.

Barshak EV, Yavorsky MA, Vikulin DV, Lapin BP, Volyar AV, Alexeyev CN. Polarization and topological mode dispersion of optical vortices in circular optical fibers. Computer Optics 2019; 43(1): 25-34. DOI: 10.18287/2412-6179-2019-43-1-25-34.


  1. Soskin M, Vasnetsov M. Singular optics. In Book: Wolf E, ed. Progress in optics. Ch 4. Elsevier Science BV; 2001: 219-276. DOI: 10.1016/S0079-6638(01)80018-4.
  2. Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics 2011; 3(2): 161-204. DOI: 10.1364/AOP.3.000161.
  3. Willner AE, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery MPJ, Tur M, Ramachandran S, Molisch AF, Ashrafi N, Ashrafi S. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics 2015; 7(1): 66-106. DOI: 10.1364/AOP.7.000066.
  4. Padgett MJ. Orbital angular momentum 25 years on. Optics Express 2017; 25(10): 11265-11274. DOI: 10.1364/OE.25.011265.
  5. Franke-Arnold S, Barnett S, Yao E, Leach J, Courtial J, Padgett M. Uncertainty principle for angular position and angular momentum. New Journal of Physics 2004; 6: 103. DOI: 10.1088/1367-2630/6/1/103.
  6. Alexeyev C, Boklag NA, Fadeyeva TA, Yavorsky M. Tunnelling of orbital angular momentum in parallel optical waveguides. Journal of Optics 2011; 13(6): 064012. DOI: 10.1088/2040-8978/13/6/064012.
  7. Molina-Terriza G, Torres JP, Torner L. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys Rev Lett 2002; 88(1): 013601. DOI: 10.1103/PhysRevLett.88.013601.
  8. Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas'ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express 2004; 12(22): 5448-5456. DOI: 10.1364/OPEX.12.005448.
  9. Bouchal Z, Celechovsky R. Mixed vortex states of light as information carriers. New Journal of Physics 2004; 6: 131. DOI: 10.1088/1367-2630/6/1/131.
  10. Wang J, Yang J-Y, Fazal IM, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner AE. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photon 2012; 6: 488-496. DOI: 10.1038/nphoton.2012.138.
  11. Yan Y, Xie G, Lavery MPJ, Huang H, Ahmed N, Bao C, Ren Y, Cao Y, Li L, Zhao Z, Molisch AF, Tur M, Padgett MJ, Willner AE. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat Commun 2014; 5: 4876. DOI: 10.1038/ncomms5876.
  12. Tamburini F, Mari E, Sponselli A, Thide B, Bianchini A, Romanato F. Encoding many channels on the same frequency through radio vorticity: first experimental test. New J Phys 2012; 14: 033001. DOI: 10.1088/1367-2630/14/3/033001.
  13. Bouchal Z, Haderka O, Celechovský R. Selective excitation of vortex fibre modes using a spatial light modulator. New Journal of Physics 2005; 7(1): 125. DOI: 10.1088/1367-2630/7/1/125.
  14. Ung B, Vaity P, Wang L, Messaddeq Y, Rusch LA, LaRochelle S. Few-mode fiber with inverse-parabolic gradedindex profile for transmission of OAM-carrying modes / Opt Express 2014; 22(15): 18044-18055. DOI: 10.1364/OE.22.018044.
  15. Ramachandran S, Kristensen P, Yan MF. Generation and propagation of radially polarized beams in optical fibers. Opt Lett 2009; 34(16): 2525-2527. DOI: 10.1364/OL.34.002525.
  16. Karpeev SV, Khonina SN. Experimental excitation and detection of angular harmonics in a step-index optical fiber. Optical Memory & Neural Networks 2007; 16(4): 295-300. DOI: 10.3103/S1060992X07040133.
  17. Lyubopytov VS, Tlyavlin AZ, Sultanov AKh, Bagmanov VKh, Khonina SN, Karpeev SV, Kazanskiy NL. Mathematical model of detection of mode propagation parameters in an optical fiber with few-mode operation for adaptive optical compensation of mode coupling [In Russian]. Computer Optics 2013; 37(3): 352-359.
  18. Malik M, O'Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery MPJ, Padgett MJ, Boyd RW. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Optics Express 2012; 20(12): 13195-13200. DOI: 10.1364/OE.20.013195.
  19. Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner AE, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013; 340(6140): 1545-1548. DOI: 10.1126/science.1237861.
  20. Bozinovic N, Golowich S, Kristensen P, Ramachandran S. Control of orbital angular momentum of light with optical fibers. Opt Lett 2012; 37(13): 2451-2453. DOI: 10.1364/OL.37.002451.
  21. Alexeyev CN. Are optical vortices robust in twisted fibres?  J Opt 2012; 14(8): 085702. DOI: 10.1088/2040-8978/14/8/085702.
  22. Barshak EV, Alexeyev CN, Lapin BP, Yavorsky MA. Twisted anisotropic fibers for robust orbital-angular-momentum-based information transmission. Phys Rev A 2015; 91: 033833. DOI: 10.1103/PhysRevA.91.033833.
  23. Alexeyev CN, Volyar AV, Yavorsky MA. Fiber optical vortices. In Book: Chen LI, ed. Lasers, optics and electro-optics research trends. Ch 5. New York: Nova Publishers; 2007: 131-223.
  24. Liberman VS, Zel'dovich YB. Spin-orbit interaction of a photon in an inhomogeneous medium. Physical Review A 1992; 46(8): 5199-5207. DOI: 10.1103/PhysRevA.46.5199.
  25. Snyder A, Love JD. Optical waveguide theory. London: Chapman and Hall; 1983. ISBN: 978-0-412-09950-2.
  26. Alexeyev CN, Volyar AV, Yavorsky MA. Transformation of optical vortices in elliptical and anisotropic optical fibres. Journal of Optics A: Pure and Applied Optics 2007; 9(4): 387-394. DOI: 10.1088/1464-4258/9/4/013.
  27. Alexeyev CN, Volyar AV, Yavorsky MA. Vortex-preserving weakly guiding anisotropic twisted fibres. Journal of Optics A: Pure and Applied Optics 2004; 6(5): S162-S165. DOI: 10.1088/1464-4258/6/5/002.
  28. Alexeyev CN, Yavorsky MA. Optical vortices and the higher order modes of twisted strongly elliptical optical fibres. Journal of Optics A: Pure and Applied Optics 2004; 6(9): 824-832. DOI: 10.1088/1464-4258/6/9/002.
  29. Barlow AJ, Ramskov-Hansen JJ, Payne DN. Birefringence and polarization mode-dispersion in spun single-mode fibers. Appl Opt 1981; 20(17): 2962-2968. DOI: 10.1364/AO.20.002962.
  30. Chen X, Hunt TL, Li M-J, Nolan DA. Properties of polarization evolution in spun fibers. Opt Lett 2003; 28(21): 2028-2030. DOI: 10.1364/OL.28.002028.
  31. Wang M, Li T, Jian S. Analytical theory for polarization mode dispersion of spun and twisted fiber. Opt Express 2003; 11(19): 2403-2410. DOI: 10.1364/OE.11.002403.
  32. Li M-J, Chen X, Nolan DA. Effects of residual stress on polarization mode dispersion of fibers made with different types of spinning. Opt Lett 2004; 29(5): 448-450. DOI: 10.1364/OL.29.000448.
  33. Fujii Y, Sano K. Polarization coupling in twisted elliptical optical fiber. Appl Opt 1980; 19(15): 2602-2605. DOI: 10.1364/AO.19.002602.
  34. Volyar AV, Zhilaitis VZ, Shvedov VG. Optical eddies in small-mode fibers: II. The spin-orbit interaction / Optics and Spectroscopy 1999; 86(4): 593-598.
  35. Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press; 1999. ISBN: 978-0-521-64222-4.
  36. Fleming JW. Dispersion in GeO2–SiO2 glasses. Appl Opt 1984; 23(24): 4486-4493. DOI: 10.1364/AO.23.004486.
  37. Huynh TL, Binh LN. MECSE-10-2004 Dispersion in photonic systems. Part 1: Fibre design for dispersion compensation and raman amplification. Technical Report MECSE 2004.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20