Demonstration of resonant phenomena analogous to Autler-Townes splitting, electromagnetically induced transparency and Fano resonances in a deformed waveguide resonator
Dyshlyuk A.V.


Institute of Automation and Control Processes FEB RAS, Vladivostok, Russia,
 Far Eastern Federal University, Vladivostok, Russia,

 Vladivostok State University of Economics and Services, Vladivostok, Russia


In this paper, we demonstrate resonant phenomena analogous to Autler-Townes splitting, electromagnetically induced transparency and Fano resonances in a resonator based on a single-mode optical waveguide with metallized end-faces. The phenomena are shown to result from strong coupling between the fundamental mode of the waveguide core and the cladding whispering gallery mode. The results obtained open new possibilities in the field of building functional photonic elements using cladding modes of bent waveguides and, in particular, fiber optic refractometers for bio- and chemosensing applications.

Autler–Townes splitting, electromagnetically induced transparency, Fano resonances, whispering gallery modes, bent single-mode optical, biosensing, chemosensing.

Dyshlyuk AV. Demonstration of resonant phenomena analogous to Autler–Townes splitting, electromagnetically induced transparency and Fano resonances in a deformed waveguide resonator. Computer Optics 2019; 43(1): 35-41. DOI: 10.18287/2412-6179-2019-43-1-35-41.


  1. Kulchin YuN, Vitrik OB, Dyshlyuk AV. Analysis of surface plasmon resonance in bent single-mode waveguides with metal-coated cladding by eigenmode expansion method. Opt Express 2014; 22(18): 22196-22201. DOI: 10.1364/OE.22.022196.
  2. Dyshlyuk AV, Vitrik OB, Kulchin YuN. Modeling of surface plasmon resonance in metalized optical waveguides with low V number by eigenmode expansion method. Opt Express 2015; 23(4): 3996-4001. DOI: 10.1364/OE.23.003996.
  3. Dyshlyuk AV, Vitrik OB, Kulchin YuN, Mitsai EV, Cherepakhin AB, Branger C, Brisset H, Iordache TV, Sarbu A. Numerical and experimental investigation of surface plasmon resonance excitation using whispering gallery modes in bent metal-clad single-mode optical fiber. J Lightw Technol 2017; 35(24): 5425-5431. DOI: 10.1109/JLT.2017.2772299.
  4. Wang P, Semenova Yu, Wu Q, Farrell G, Ti Y, Zheng J. Macrobending single-mode fiber-based refractometer. Appl Opt 2009; 48(31): 6044-6049. DOI: 10.1364/AO.48.006044.
  5. Kulchin YuN, Vitrik OB, Gurbatov SO. Effect of small variations in the refractive index of the ambient medium on the spectrum of a bent fibre-optic Fabry–Perot interferometer. Quantum Electronics 2011; 41(9): 821. DOI: 10.1070/QE2011v041n09ABEH014677.
  6. Wang P, Semenova Yu, Li Y, Wu Q, Farrell G. A macrobending singlemode fiber refractive index sensor for low refractive index liquids. Photonics Letters of Poland 2010; 2(2): 67-69. DOI: 10.4302/plp.2010.2.05.
  7. Chiang Ch-Ch, Chao J-C. Whispering gallery mode based optical fiber sensor for measuring concentration of salt solution. Journal of Nanomaterials 2013; 2013: 4. DOI: 10.1155/2013/372625.
  8. Zourob M, Akhlesh L, eds. Optical guided-wave chemical and biosensors II. Berlin, Heidelberg: Springer Science & Business Media; 2010. ISBN: 978-3-642-02826-7.
  9. Klantsataya E, Jia P, Ebendorff-Heidepriem H, Monro TM, François A. Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends. Sensors 2016; 17(1): 12. DOI: 10.3390/s17010012.
  10. Wang X, Wolfbeis OS. Fiber-optic chemical sensors and biosensors (2013–2015). Analytical Chemistry 2015; 88(1): 203-227. DOI: 10.1021/acs.analchem.5b04298.
  11. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 2008; 108(2): 462-493. DOI: 10.1021/cr068107d.
  12. Guo X. Surface plasmon resonance based biosensor technique: a review. J Biophotonics 2012; 5(7): 483-501. DOI: 10.1002/jbio.201200015.
  13. Limonov MF, Rybin MV, Poddubny AN, Kivshar YS. Fano resonances in photonics. Nature Photonics 2017; 11(9): 543-554. DOI: 10.1038/nphoton.2017.142.
  14. Miroshnichenko AE, Flach S, Kivshar YS. Fano resonances in nanoscale structures. Rev Mod Phys 2010; 82(3): 2257-2298. DOI: 10.1103/RevModPhys.82.2257.
  15. Rybin MV, Khanikaev AB, Inoue M, Samusev AK, Steel MJ, Yushin G, Limonov MF. Bragg scattering induces Fano resonance in photonic crystals. Photon Nanostruct Fundam Appl 2010; 8(2): 86-93. DOI: 10.1016/j.photonics.2009.07.003.
  16. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong ChT. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 2010; 9: 707-715. DOI: 10.1038/nmat2810.
  17. Rahmani M, Luk’yanchuk B, Hong M. Fano resonance in novel plasmonic nanostructures. Laser Photon Rev 2013; 7(3): 329-349. DOI: 10.1002/lpor.201200021.
  18. Kraft M, Luo Y, Maier SA, Pendry JB. Designing plasmonic gratings with transformation optics. Phys Rev X 2015; 5(3): 031029. DOI: 10.1103/PhysRevX.5.031029.
  19. Wu Ch, Khanikaev AB, Adato R, Arju N, Yanik AA, Altug H, Shvets G. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nature materials 2012; 11(1): 69-75. DOI: 10.1038/nmat3161.
  20. Zhu H, Yi F, Cubukcu E. Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances. Nat Photon 2016; 10: 709-714. DOI: 10.1038/nphoton.2016.183.
  21. Novotny L. Strong coupling, energy splitting, and level crossings: A classical perspective. American Journal of Physics 2010; 78(11): 1199-1202. DOI: 10.1119/1.3471177.
  22. Garrido Alzar CL, Martinez MAG, Nussenzveig P. Classical analog of electromagnetically induced transparency. American Journal of Physics 2002; 70(1): 37-41. DOI: 10.1119/1.1412644.
  23. Johnson PB, Christy RW. Optical constants of the noble metals. Physical review B 1972; 6(12): 4370. DOI: 10.1103/PhysRevB.6.4370.
  24. Peng B, Özdemir ŞK, Chen W, Nori F, Yang L. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nature Communications 2014; 5: 5082. DOI: 10.1038/ncomms6082.
  25. Snyder AW, Love J. Optical waveguide theory. Springer Science & Business Media; 2012. ISBN: 978-0-412-09950-2.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20