A method for dynamic segmentation of a pair of sequental video-frames
Vaganov S.E.


Ivanovo State University, Ivanovo, Russia


An algorithm of dynamic segmentation of sequential frame pairs was proposed. A comparative analysis of segmentation quality when finding shifts and affine inter-frame transformations for the segments was conducted. In addition, we compared the performance of the proposed method with some static segmentation approaches.

segmentation, image, video, affine transformation, optical flow.

Vaganov SE. A method for dynamic segmentation of a pair of sequential video-frames. Computer Optics 2019; 43(1): 83-89. DOI: 10.18287/2412-6179-2019-43-1-83-89.


  1. Ghazvinian Zanjani F, van Gerven M. Improving semantic video segmentation by dynamic scene integration. The Netherlands Conference on Computer Vision 2016.
  2. Tsai Y-H, Yang M-H, Black MJ. Video segmentation via object flow. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016: 3899-3908. DOI: 10.1109/CVPR.2016.423.
  3. Kumar MP, Torr PHS, Zisserman A. Learning layered motion segmentations of video. International Journal of Computer Vision 2008; 76(3): 301-319. DOI: 10.1007/s11263-007-0064-x.
  4. Sevilla-Lara L, Sun D, Jampani V, Black MJ. Optical flow with semantic segmentation and localized layers. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016: 3889-3898. DOI: 10.1109/CVPR.2016.422.
  5. Zappella L, Llado X, Salvi J. New trends in motion segmentation. In Book: Yin P-Y, ed. Pattern Recognition. Ch 3. Rijeka, Croatia: IntechOpen; 2009: 31-46. DOI: 10.5772/7551.
  6. Optical flow evaluation results. Source: <http://vision.middlebury.edu/flow/eval/results/results-i1.php>.
  7. Lucas BD, Kanade T. An iterative image registration technique with an application to stereo vision. Proceedings of the 1981 DARPA Image Understanding Workshop 1981: 121-130.
  8. Baker S, Matthews I. Lucas-Kanade 20 years on: A unifying framework. International Journal of Computer Vision 2004; 56(3): 221-255. DOI: 10.1023/B:VISI.0000011205.11775.fd.
  9. Hashin SI. The estimation of quality of segmentation of the map [In Russian]. Ivanovo Sate University bulletin, Series “Natural, Social Sciences” 2010: 2; 112-117.
  10. Szeliski R. Computer vision: Algorithms and applications. London: Springer; 2011. ISBN: 978-1-84882-934-3.
  11. Vaganov SE, Hashin SI. A comparison of the effectiveness of different versions of Lucas–Kanade method [In Russian]. Ivanovo Sate University Bulletin, Series “Natural, Social Sciences” 2017: 2: 63-70.
  12. Farnebäck G. Two-frame motion estimation based on polynomial expansion. In Book: Bigun J, Gustavsson T, eds. Image analysis. SCIA: Scandinavian conference on image analysis. Berlin, Heidelberg: Springer; 2003: 363-370. DOI: 10.1007/3-540-45103-X_50.
  13. Khashin SI. Affine version of Lucas–Kanade algorithm [In Russian]. Proceedings of Mathematical Method of Pattern Recognition 2011: 459-462.
  14. Test bmp-file pairs [In Russian]. Source: <http://math.ivanovo.ac.ru/dalgebra/Khashin/bmp_ex2/>.
  15. Kruchinin AE, Hashin SI. The image segmentation by building continuous borders [In Russian]. Ivanovo Sate University Bulletin 2007; 3: 80-83.
  16. Khashin SI. Dynamic segmentation of frames sequences [In Russian]. Machine Learning and Data Analysis 2013; 6(1): 787-795.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20