A review of methods of embedding information in digital objects for security in the internet of things
Evsutin O.O., Kokurina A.S., Meshcheryakov R.V.


Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia,

V.A. Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences, Moscow, Russia


Transmission, processing and storage of information in the infrastructure of the Internet of Things are related to the necessity for solving a number of problems in information security. The main difficulty lies in the fact that the infrastructure of the Internet of Things is not homogeneous and contains many different devices, including those with limited computing resources. One of the approaches to solving these problems is to embed additional information into the transmitted and stored digital objects. In this paper we present a review of methods of embedding information in digital data to provide security in the Internet of Things, including methods of steganographic embedding of information and methods for embedding digital watermarks. We reviewed methods of embedding information into digital images, as well as wireless sensor network data, proposed for use in the Internet of Things. In this paper we defined the advantages and disadvantages of individual methods and groups of methods, also we analyzed their applicability for data protection in the Internet of Things. Relevant trends in this field of research have been identified.

information security, Internet of Things, information embedding, digital images, steganography, digital watermark.

Evsutin OO, Kokurina AS, Meshcheryakov RV. A review of the methods of embedding information in digital objects for security in the Internet of things. Computer Optics 2019; 43(1): 137-154. DOI: 10.18287/2412-6179-2019-43-1-137-154.


      1. Li S, Xu LD, Zhao S. The internet of things: a survey. Information Systems Frontiers 2015; 17(2): 243-259. DOI: 10.1007/s10796-014-9492-7.
      2. Boavida F, Kliem A, Renner T, Riekki J, Jouvray C, Jacovi M, Ivanov S, Guadagni F, Gil P, Triviño A. People-centric internet of things – Challenges, approach, and enabling technologies. In Book: Novais P, Camacho D, Analide C, Seghrouchni AEF, Badica C, eds. Intelligent Distributed Computing IX. Cham: Springer; 2016: 463-474. DOI: 10.1007/978-3-319-25017-5_44.
      3. Hmood AK, Jalab HA, Kasirun ZM, Zaidan BB, Zaidan AA. On the capacity and security of steganography approaches: An overview. Journal of Applied Sciences 2010; 10(16): 1825-1833. DOI: 10.3923/jas.2010.1825.1833.
      4. Bazyar M, Sudirman R. A recent review of MP3 based steganography methods. International Journal of Security and its Applications 2014; 8(6): 405-414. DOI: 10.14257/ijsia.2014.8.6.35.
      5. Cheddad A, Condell J, Curran K, Mc Kevitt P. Digital image steganography: Survey and analysis of current methods. Signal Processing 2010; 90(3): 727-752. DOI: 10.1016/j.sigpro.2009.08.010.
      6. Sadek MM, Khalifa AS, Mostafa MGM. Video steganography: a comprehensive review. Multimedia Tools and Applications 2015; 74(17): 7063-7094. DOI: 10.1007/s11042-014-1952-z.
      7. Fridrich J. Steganography in digital media: Principles, algorithms and applications. New York: Cambridge University Press; 2010. ISBN: 978-0-521-19019-0.
      8. Mitekin V, Fedoseev V. A new QIM-based watermarking algorithm robust against multi-image histogram attack.  Procedia Engineering 2017; 201: 453-462. DOI: 10.1016/j.proeng.2017.09.687.
      9. Bianchi T, Piva A. Secure watermarking for multimedia content protection: A review of its benefits and open issues. IEEE Signal Processing Magazine 2013; 30(2): 87-96. DOI: 10.1109/MSP.2012.2228342
      10. Kannan D, Gobi M. An extensive research on robust digital image watermarking techniques: A review. International Journal of Signal and Imaging Systems Engineering 2015; 8(1-2): 89-104. DOI: 10.1504/IJSISE.2015.067047.
      11. Panah AS, Schyndel RV, Sellis T, Bertino E. On the properties of non-media digital watermarking: A review of state of the art techniques. IEEE Access 2016; 4: 2670-2704. DOI: 10.1109/ACCESS.2016.2570812.
      12. Bairagi AK, Khondoker R, Islam R. An efficient steganographic approach for protecting communication in the Internet of Things IoT critical infrastructures. Information Security Journal: A Global Perspective 2016; 25(4-6): 192-212. DOI: 10.1080/19393555.2016.1206640.
      13. Li H, Hu L, Chu J, Chi L, Li H. The maximum matching degree sifting algorithm for steganography pretreatment applied to IoT. Multimedia Tools and Applications 2018; 77(14): 18203-18221. DOI: 10.1007/s11042-017-5075-1.
      14. Parah SA, Sheikh JA, Ahad F, Bhat GM. High capacity and secure electronic patient record (EPR) embedding in color images for IoT driven healthcare systems. In Book: Dey N, Hassanien AE, Bhatt C, Ashour AS, Satapathy SC, eds. Internet of things and big data analytics toward next-generation intelligence. Cham, Switzerland: Springer International Publishing AG; 2018: 409-437. DOI: 10.1007/978-3-319-60435-0_17.
      15. Parah SA, Sheikh JA, Akhoon JA, Loan NA. Electronic Health Record hiding in Images for smart city applications: A computationally efficient and reversible information hiding technique for secure communication. Future Generation Computer Systems 2018; In Press. DOI: 10.1016/j.future.2018.02.023.
      16. Huang C-T, Tsai M-Y, Lin L-C, Wang W-J, Wang S-J. VQ-based data hiding in IoT networks using two-level encoding with adaptive pixel replacements. Journal of Supercomputing 2016; 74(9): 4295-4314. DOI: 10.1007/s11227-016-1874-9.
      17. Tondwalkar A, Vinayakray-Jani P. Secure localisation of wireless devices with application to sensor networks using steganography. Procedia Computer Science 2016; 78: 610-616. DOI: 10.1016/j.procs.2016.02.107.
      18. Kim SR, Kim JN, Kim ST, Shin S, Yi JH. Anti-reversible dynamic tamper detection scheme using distributed image steganography for IoT applications. The Journal of Supercomputing 2018; 74(9): 4261-4280. DOI: 10.1007/s11227-016-1848-y.
      19. Elhoseny M, Ramírez-González G, Abu-Elnasr OM, Shawkat SA, N A, Farouk A. Secure medical data transmission model for IoT-based healthcare systems. IEEE Access 2018; 6: 20596-20608. DOI: 10.1109/ACCESS.2018.2817615
      20. Das R, Das I. Secure data transfer in IoT environment: Adopting both cryptography and steganography techniques. Proceedings of the Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN) 2016: 296-301. DOI: 10.1109/ICRCICN.2016.7813674.
      21. Yassin AA, Rashid AM, Abduljabbar ZA, Alasadi HAA, Aldarwish AJY. Toward for strong authentication code in cloud of internet of things based on DWT and steganography. Journal of Theoretical and Applied Information Technology 2018; 96(10): 2922-2935.
      22. Bapat C, Baleri G, Inamdar S, Nimkar AV. Smart-lock security re-engineered using cryptography and steganography. In Book: Thampi SM, Pérez GM, Westphall CB, Hu J, Fan CI, Mármol FG, eds. Security in computing and communications. Singapore: Springer Nature Singapore Pte Ltd; 2017: 325-336. DOI: 10.1007/978-981-10-6898-0_27.
      23. Li L, Hossain MS, Abd El-Latif AA, Alhamid MF. Distortion less secret image sharing scheme for Internet of Things system. Cluster Computing 2017; 1-15. DOI: 10.1007/s10586-017-1345-y.
      24. De Fuentes JM, Blasco J, González-Tablas AI, González-Manzano L. Applying information hiding in VANETs to covertly report misbehaving vehicles. International Journal of Distributed Sensor Networks 2014; 10(2): 1-15. DOI: 10.1155/2014/120626.
      25. Ren J, Wu G, Yao L. A sensitive data aggregation scheme for body sensor networks based on data hiding. Personal and Ubiquitous Computing 2013; 17(7): 1317-1329. DOI: 10.1007/s00779-012-0566-6.
      26. Pizzolante R, Castiglione A, Carpentieri B, De Santis A, Palmieri F, Castiglione A. On the protection of consumer genomic data in the Internet of Living Things. Computers & Security 2018; 74: 384-400. DOI: 10.1016/j.cose.2017.06.003.
      27. Wang H. Communication-resource-aware adaptive watermarking for multimedia authentication in wireless multimedia sensor networks. Journal of Supercomputing 2013; 64(3): 883-897. DOI: 10.1016/j.cose.2017.06.003.
      28. Wang J, Smith GL. A cross-layer authentication design for secure video transportation in wireless sensor network. International Journal of Security and Networks 2010; 5(1): 63-76. DOI: 10.1504/IJSN.2010.030724.
      29. Zhang W, Liu Y, Das SK, De P. Secure data aggregation in wireless sensor networks: A watermark based authentication supportive approach. Pervasive and Mobile Computing 2008; 4(5): 658-680. DOI: 10.1016/j.pmcj.2008.05.005.
      30. Panah AS, Schyndel RV, Sellis T, Bertino E. In the shadows we trust: A secure aggregation tolerant watermark for data streams. Proceedings of the IEEE 16th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM) 2015: 1-9. DOI: 10.1109/WoWMoM.2015.7158149.
      31. Yavari A, Panah AS, Georgakopoulos D, Jayaraman PP, Van Schyndel R. Scalable role-based data disclosure control for the Internet of Things. Proceedings of the IEEE 37th International Conference on Distributed Computing Systems (ICDCS) 2017: 2226-2233. DOI: 10.1109/ICDCS.2017.307.
      32. Yi Y, Li R, Chen F, Liu AX, Lin Y. A digital watermarking approach to secure and precise range query processing in sensor networks. 2013 Proceedings IEEE INFOCOM 2013: 1950-1958. DOI: 10.1109/INFCOM.2013.6566995.
      33. Yue M, Peng Z, Zheng K, Peng Y. Rights protection for trajectory streams. In Book: Bhowmick SS, Dyreson CE, Jensen CS, Lee ML, Muliantara A, Thalheim B, eds. Database systems for advanced applications. Cham, Switzerland: Springer International Publishing; 2014: 407-421. DOI: 10.1007/978-3-319-05813-9_27.
      34. Lipuš B, Žalik B. Robust watermarking of airborne LiDAR data. Multimedia Tools and Applications 2018; 77(21): 29077-29097. DOI: 10.1007/s11042-018-6039-9.
      35. Hameed K, Khan A, Ahmed M, Reddy AG, Rathore MM. Towards a formally verified zero watermarking scheme for data integrity in the Internet of Things based-wireless sensor networks. Future Generation Computer Systems 2018; 82: 274-289. DOI: 10.1016/j.future.2017.12.009.
      36. Wang C, Bai Y, Mo X. Data secure transmission model based on compressed sensing and digital watermarking technology. Wuhan University Journal of Natural Sciences 2014; 19(6): 505-511. DOI: 10.1007/s11859-014-1045-x.
      37. Zhang G, Kou L, Zhang L, Liu C, Da Q, Sun J. A new digital watermarking method for data integrity protection in the perception layer of IoT. Security and Communication Networks 2017; 2017: 3126010. DOI: 10.1155/2017/3126010.
      38. Kamel I, Juma H. Simplified watermarking scheme for sensor networks. International Journal of Internet Protocol Technology 2010; 5(1-2): 101-111. DOI: 10.1504/IJIPT.2010.032619.
      39. Shi X, Xiao D. A reversible watermarking authentication scheme for wireless sensor networks. Information Sciences 2013; 240: 173-183. DOI: 10.1016/j.ins.2013.03.031.
      40. Chong S, Skalka C, Vaughan JA. Self-identifying data for fair use. Journal of Data and Information Quality 2015; 5(3): 11. DOI: 10.1145/2687422.

      © 2009, IPSI RAS
      151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20