Measurement of the orbital angular momentum of an  astigmatic Hermite–Gaussian beam
    Kotlyar V.V., Kovalev A.A., Porfirev A.P.
   
  IPSI RAS – Branch of the  FSRC “Crystallography and Photonics” RAS, 
Molodogvardeyskaya 151, 443001, Samara, Russia;
 Samara National Research University, Moskovskoye shosse, 34,  443086, Samara, Russia
 PDF
  PDF
Abstract:
Here we study three  different types of astigmatic Gaussian beams, whose complex amplitude in the  Fresnel diffraction zone is described by the complex argument Hermite  polynomial of the order (n, 0).  The first type is a circularly symmetric Gaussian optical vortex with and a  topological charge n after passing through a  cylindrical lens. On propagation, the optical vortex "splits" into n first-order optical vortices. Its orbital angular  momentum per photon is equal to n. The second  type is an elliptical Gaussian optical vortex with a topological charge n after passing through a cylindrical lens. With a  special choice of the ellipticity degree (1: 3), such a beam retains its  structure upon propagation and the degenerate intensity null on the optical  axis does not “split” into n optical vortices.  Such a beam has fractional orbital angular momentum not equal to n. The third type is the astigmatic  Hermite-Gaussian beam (HG) of order (n, 0),  which is generated when a HG beam passes through a cylindrical lens. The  cylindrical lens brings the orbital angular momentum into the original HG beam.  The orbital angular momentum of such a beam is the sum of the vortex and  astigmatic components, and can reach large values (tens and hundreds of  thousands per photon). Under certain conditions, the zero intensity lines of  the HG beam "merge" into an n-fold  degenerate intensity null on the optical axis, and the orbital angular momentum  of such a beam is equal to n. Using  intensity distributions of the astigmatic HG beam in foci of two cylindrical  lenses, we calculate the normalized orbital angular momentum which differs only  by 7 % from its theoretical orbital angular momentum value (experimental  orbital angular momentum is –13,62,  theoretical OAM is –14.76).
Keywords:
orbital angular  momentum, Hermite-Gaussian beam, astigmatism, cylindrical lens, Hermite  polynomial
Citation:
Kotlyar VV, Kovalev AA, Porfirev AP. Measurement of the orbital angular momentum of an astigmatic Hermite–Gaussian  beam. Computer Optics 2019; 43(3): 356-367.  DOI: 10.18287/2412-6179-2019-43-3-356-367.
References:
  - Grier D. A revolution in  optical manipulation. Nature 2003; 424: 810-816.
- Kuga T, Torii Y,  Shiokawa N, Hirano T. Novel optical trap of atoms with a doughnut beam. Phys  Rev Lett 1997; 78: 4713-4716.
- Bernet  S, Jesacher A, Furhapter S, Maurer C, Ritsch-Marte M. Quantitative imaging of  complex samples by spiral phase contrast microscopy. Opt Express 2006; 14:  3792-3805.
 
- Willig  KI, Rizzoli SO, Westphal V, Jahn R, Hell SW. STED microscopy reveals that  synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 2006;  440: 935-939.
 
- Wang  J, Yang J, Fazal IM, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M,  Willner AE. Terabit free-space data transmission employing orbital angular  momentum multiplexing. Nat Photon 2012; 6: 488-496.
 
- Mair  A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum  states of photons. Nature 2001; 412: 313-316.
 
- Courtial  J, Dholakia K, Allen L, Padgett MJ. Gaussian beams with very high orbital angular momentum. Opt Commun 1997;  144: 210-213.
 
- Abramochkin  E, Volostnikov V. Beam transformations and nontransformed beams. Opt Commun  1991; 83(1-2): 123-135. DOI: 10.1016/0030-4018(91)90534-K.
 
- Izdebskaya  Y, Fadeyeva T, Shvedov V, Volyar A. Vortex-bearing array of singular beams with  very high orbital angular momentum. Opt Lett 2006; 31(17): 2523-2525.
 
- Li  A, Zhang M, Liang G, Li X, Chen X, Cheng C. Generation of high-order optical  vortices with asymmetrical pinhole plates under plane wave illumination. Opt  Express 2013; 21(13): 15755-15764.
 
- Krenn  M, Tischler N, Zeilinger A. On small beams with large topological charge. New J  Phys 2016; 18: 033012.
 
- Zheng  S, Wang J. Measuring orbital angular momentum (OAM) states of vortex beams with  annular gratings. Sci Rep 2017; 7: 40781.
 
- Vieira  J, Trines RMGM, Alves EP, Fonseca RA, Mendonca JT, Bingham R, Norreys P, Silva  LO. High orbital angular momentum harmonic generation. Phys Rev Lett 2016; 117:  265001.
 
- Chen  Y, Fang Z, Ren Y, Gong L, Lu R. Generation and characterization of a perfect  vortex beam with a large topological charge through a digital micro-mirror  device. Appl Opt 2015; 54(27): 8030-8035.
 
- Jesacher  A, Furhapter S., Maurer C, Bernet S, Ritsch-Marte M. Holographic optical  tweezers for object manipulations at an air-liquid surface. Opt Express 2006;  14(13): 6342-6352.
 
- Fickler  R, Lapkiewicz R, Plick WN, Krenn M, Schaeff C, Ramelow S, Zeilinger A. Quantum  entanglement of high angular momenta. Science 2012; 338: 640-643.
 
- Campbell  G, Hage B, Buchler B, Lam PK. Generation of high-order optical vortices using  directly machined spiral phase mirrors. Appl Opt 2012; 51(7): 873-876.
 
- Shen  Y, Campbell GT, Hage B, Zou H, Buchler BC, Lam PK. Generation and  interferometric analysis of high charge optical vortices. J Opt 2013; 15(4):  044005.
 
- Mafakheri  E, Tavabi AH, Lu P, Balboni R, Venturi F, Menozzi C, Gazzadi GC, Frabboni S,  Sit A, Dunin-Borkowski RE, Karimi E. Realization of electron vortices with  large orbital angular momentum using miniature holograms fabricated by electron  beam lithography. Appl Phys Lett 2017; 110: 093113.
 
- Fickler  R, Campbell G, Buchler B, Lam PK,  Zeilinger A. Quantum entanglement of angular momentum states with quantum  number up to 10010. Proc Natl Acad Sci 2016; 113(48): 13642-13647.
 
- Kotlyar VV, Kovalev AA. Vortex-free laser beam with an orbital angular  momentum. Computer Optics 2017; 41(4): 573-576. DOI:  10.18287/2412-6179-2017-41-4-573-576.
 
- Kotlyar  VV, Kovalev AA, Porfirev AP. Astigmatic laser beams with a large orbital angular momentum. Opt.  Express 2018; 26(1): 141-156.
 
- Kotlyar  VV, Kovalev AA, Pofirev AP. Astigmatic transforms of an optical vortex for  measurement of its topological charge. Appl Opt 2017; 56(14): 4095-4104. DOI:  10.1364/AO.56.004095.
 
- Molina-Terriza  G, Recolons J, Torres JP, Torner L, Wright EM. Observation of the dynamical  inversion of the topological charge of an optical vortex. Phys Rev Lett 2001;  87(2): 023902.
 
- Prudnikov  AP, Brychkov YA, Marichev OI. Integrals and Series, Special Functions. New York: Gordon and  Breach; 1981.
 
- Abramowitz  M, Stegun IA.  Handbook of mathematical functions: With formulas, graphs, and mathematical  tables. New York:  Dover Publications Inc; 1979.
 
- Bekshaev  A, Soskin M, Vasnetsov M. Optical vortex symmetry breakdown and decomposition  of the orbital angular momentum of light beams. J Opt Soc Am A 2003; 20(8):  1635-1643.
 
- Fadeyeva  TA, Rubass AF, Aleksandrov RV, Volyar AV. Does the optical angular momentum change  smoothly in fractional-charged vortex beams? J Opt Soc Am B 2014; 31(4):  798-805.
 
- Alperin  SN, Niederriter RD, Gopinath JT, Siemens ME. Quantitative measurement of the  orbital angular momentum of light with a single, stationary lens. Opt Lett  2016; 41(21): 5019-5022.
 
- Kotlyar  VV, Kovalev AA, Porfirev AP. Methods for determining the orbital angular momentum of a laser beam.  Computer Optics 2019; 43(1): 42-53. DOI: 10.18287/2412-6179-2019-43-1-42-53.
 
- Goorden  SA, Bertolotti J, Mosk AP. Superpixel-based spatial amplitude and phase modulation using a digital  micromirror device. Opt Express 2014; 22: 17999-18009. 
- CHR71000. Ultra high resolution 71 megapixels CMOS  image sensor. Source: <https://ams.com/chr71000>. 
  
  © 2009, IPSI RAS
  151,  Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7  (846)  242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing   editor), Fax: +7 (846) 332-56-20