Experimental investigation of the stability of Bessel beams in the  atmosphere
  Vasilyev  V.S., Kapustin A.I., Skidanov R.V., Podlipnov V.V., Ivliev N.A., Ganchevskaya  S.V.
   
  IPSI RAS – Branch of the  FSRC “Crystallography and Photonics” RAS, 
Molodogvardeyskaya 151, 443001, Samara, Russia;
 Samara National Research University, Moskovskoye shosse, 34,  443086, Samara, Russia
 PDF
  PDF
Abstract:
We described an  experiment on passing Bessel beams through the atmosphere with heat-trolled  flows. We showed that at small distances, while passing through the region with  a hot air flow, the Bessel beam can be distorted to a complete loss of the  structure, but with further propagation over large distances it completely  restores its structure. We also described an experiment with the passage of  superpositions of vortex beams through the atmosphere with heat flows and  aerosols.
Keywords:
Bessel beams,  propagation of coherent radiation in the atmosphere, axicon
Citation:
Vasilyev VS, Kapustin  AI, Skidanov RV, Podlipnov VV, Ivliev NA, Ganchevskaya SV. Experimental investigation of the stability  of Bessel beams in the atmosphere. Computer Optics 2019; 43(3): 376-384.  DOI: 10.18287/2412-6179-2019-43-3-376-384.
References:
  - Xu Y, Zhang Y.  Bandwidth-limited orbital angular momentum mode of Bessel Gaussian beams in the  moderate to strong non-Kolmogorov turbulence. Opt Commun 2019; 438: 90-95.
- Soifer VA, Korotkova О,  Khonina SN, Shchepakina ЕА. Vortex beams in turbulent media: Review. Computer  Optics 2016; 40(5): 605-624. DOI: 10.18287/2412-6179-2016-40-5-605-624.
- Boufalah  F, Dalil-Essakali L, Ezzariy L, Belafhal A. Introduction of generalized  Bessel–Laguerre–Gaussian beams and its central intensity travelling a turbulent  atmosphere. Optical and Quantum Electronics 2018; 50(8): 305.
 
- Lukin  IP. Coherence of Bessel-Gaussian beams propagating in a Turbulent atmosphere.  Atmospheric and Oceanic Optics 2018; 31(1): 49-59.
 
- Li  Y, Zhang Y. OAM mode of the Hankel-Bessel vortex beam in weak to strong  turbulent link of marine-atmosphere. Laser Physics 2017; 27(4): 045201.
 
- Saad  F, El Halba EM, Belafhal A. A theoretical study of the on-axis average  intensity of generalized spiraling Bessel beams in a turbulent atmosphere.  Optical and Quantum Electronics 2017; 49(3): 94.
 
- Yuan  Y, Lei T, Li Z, Li Y, Gao S, Xie Z, Yuan X. Beam wander relieved orbital  angular momentum communication in turbulent atmosphere using Bessel beams. Sci  Rep 2017; 7: 42276.
 
- Zhu Y, Chen M,  Zhang Y, Li Y. Propagation of the OAM mode carried by partially coherent  modified Bessel-Gaussian beams in an aniso-tropic non-Kolmogorov marine atmosphere.  J Opt Soc Am A 2016; 33(12): 2277-2283.
 
- Zhang  Y, Ma D, Yuan X, Zhou Z. Numerical investigation of flat-topped vortex hollow  beams and Bessel beams propagating in a turbulent atmosphere. Appl Opt 2016;  55(32): 9211-9216.
 
- Lukin  IP. Spatial scales of coherence of diffraction-free beams in a turbulent  atmosphere. Atmospheric and Oceanic Optics 2016; 29(5): 431-440.
 
- Li  Y, Zhang Y, Wang D, Shan L, Xia M, Zhao Y. Statistical distribution of the OAM  states of Bessel-Gaussian-Schell infrared beams in strong turbulent atmosphere.  Infrared Physics and Technology 2016; 76: 569-573.
 
- Lukin  IP. Integral momenta of vortex Bessel-Gaussian beams in turbulent atmosphere.  Appl Opt 2016; 55(12): B61-B66.
 
- Teen  YPA, Suresh P, Nathiyaa T, Rajesh KB, Pillai TVS. Study on intensity  distributions of a BG beam with effect of  tilt and astigmatism aberration in a turbulent atmosphere. Optik 2015;  126(23): 3830-3837.
 
- Wang  X, Yao M, Qiu Z, Yi X, Liu Z. Evolution properties of Bessel-Gaussian  Schell-model beams in non-Kolmogorov turbulence. Opt Express 2015;  23(10): 12508-12523.
 
- Aksenov  VP, Kolosov VV, Pogutsa CE. Random wandering of laser beams with orbital angular momentum during  propagation through atmospheric turbulence. Appl Opt 2014; 17: 3607-3614.
 
- Nelson  W, Palastro JP, Davis CC, Sprangle P. Propagation of Bessel and Airy beams  through atmospheric turbulence. J Opt Soc Am A 2014; 31(3): 603-609.
 
- Zhu  K, Li S, Tang Y, Yu Y, Tang H. Study on the propagation parameters of  Bessel-Gaussian beams carrying optical vortices through atmospheric turbulence.  J Opt Soc Am A 2012; 29(3): 251-257.
 
- Lukin  IP. Bessel-Gaussian beam phase fluctuations in randomly inhomogeneous media.  Atmospheric and Oceanic Optics 2010; 23(3): 236-240.
 
- Cang  J, Zhang Y. Axial intensity distribution of truncated Bessel-Gauss beams in a  turbulent atmosphere. Optik 2010; 121(3): 239-245.
 
- Zhu  K, Zhou G, Li X, Zheng X, Tang H. Propagation of Bessel–Gaussian beams with  optical vortices in turbulent atmosphere. Opt Express 2008; 16(26):  21315-21320.
 
- Eyyuboǧlu HT, Sermutlu E, Baykal Y, Cai Y, Korotkova  O. Intensity  fluctuations in J-Bessel-Gaussian beams of all orders propagating in turbulent  atmosphere. Appl Phys B 2008; 93(2-3): 605-611.
 
- Chen  B, Chen Z, Pu J. Propagation of partially coherent Bessel–Gaussian beams in  turbulent atmosphere. Opt Laser Technol 2008; 40(6): 820-827.
 
- Eyyuboǧlu  HT, Hardalaç F. Propagation of modified Bessel-Gaussian beams in turbulence.  Opt Laser Technol 2008; 40(2): 343-351.
 
- Noriega-Manez  RJ, Gutiérrez-Vega JC. Rytov  theory for Helmholtz-Gauss beams in turbulent atmosphere. Opt Express 2007;  15(25): 16328-16341.
 
- Zhu  X, Lu L, Cao Z, Zeng B, Xu M. Transmission matrix-based Electric field Monte Carlo study and experimental validation of the  propagation characteristics of Bessel beams in turbid media. Opt Lett 2018;  43(19): 4835-4838.
 
- Knyazev  BA, Choporova YY, Pavelyev VS, Osintseva   ND, Volodkin BO. Transmission of  high-power terahertz beams with orbital angular momentum through atmosphere.  2016 41st International Conference on Infrared, Millimeter, and Terahertz waves  (IRMMW-THz) 2016: 7758816. DOI: 10.1109/IRMMW-THz.2016.7758816.
 
- Chen  S, Li S, Zhao Y, Liu J, Zhu L, Wang A, Du J, Shen L, Wang J. Demonstration of  20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive  turbulence compensation. Opt Lett 2016; 41(20): 4680-4683.
 
- Arul  Teen YP, Nathiyaa T, Rajesh KB, Karthick S. Bessel Gaussian beam propagation  through turbulence in free space optical communication. Optical Memory and  Neural Networks 2018; 27(2): 81-88.
 
- Durnin  J, Miceli JJ Jr, Eberly JH. Diffraction-free beams. Phys Rev Lett 1987; 58:  1499-1501.
 
- Skidanov  RV, Ganchevskaya SV. Diffractive optical elements for the for-mation of  combinations of vortex beams in the problem manipulation of microobjects.  Computer Optics 2014; 38(1): 65-71.
 
- Tozer  TC, Grace D. High-altitude platforms for wireless communications. IEE  Electronics & Communication Engineering Journal 2001; 13(3): 127-137.
 
- Al-Habash  MA, Andrews LC, Phillips RL. Mathematical model for the irradiance probability  density function of a laser beam propagating through turbulent media. Optical  Engineering 2001; 40(8): 1554-1562.
 
- Strömqvist-Vetelino  F, Recolons J, Andrews LC, Young C, Clare B, Corbett K, Grant K. PDF models of  the irradiance fluctuations in Gaussian beam waves. Proc SPIE 2006; 6215:  62150A.
 
- Eyyuboğlu HT.  Propagation of higher order Bessel–Gaussian beams in turbulence. Appl Phys B  2007; 88(2): 259-265.
 
- Weyrauch  T, Vorontsov M. Atmospheric compensation with a speckle beacon in strong  scintillation conditions: directed energy and laser communication applications.  Appl Opt 2005; 44: 6388-6401.
 
- Tunick  A. Optical turbulence parameters characterized via optical measurements over a 2.33 km free-space laser  path. Opt Express 2008; 16: 14645-14654.
 
- Vorontsov  M, Carhart G, Beresnev L, Vorontsov M, Weyrauch T, Riker J, Gudimetla RVS,  Roberts LC. Deep turbulence effects compensation experiments with a cascaded  adaptive optics system using a 3.63   m telescope. Appl Opt 2009; 48: A47-A57.
 
- Porfirev  AP, Kirilenko MS, Khonina SN, Skidanov RV, Soifer VA. Study of propagation of  vortex beams in aerosol optical medium. Appl Opt 2017; 56(11): E8-E15. DOI: 10.1364/AO.56.0000E8. 
 
- Karpeev  SV, Paranin VD, Kirilenko MS. Comparison of the stability of LaguerrеGauss vortex beams to random  fluctuations of the optical environment [In Russian]. Computer Optics 2017;  41(2): 208-217. DOI: 10.18287/2412-6179-2017-41-2-208-217. 
- Khonina SN, Karpeev SV, Paranin VD. A technique for  simultaneous detection of individual vortex states of Laguerre–Gaussian beams  transmitted through an aqueous suspension of microparticles. Optics and Lasers in Engineering 2018; 105: 68-74. DOI:  10.1016/j.optlaseng.2018.01.006. 
  
  © 2009, IPSI RAS
  151,  Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7  (846)  242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing   editor), Fax: +7 (846) 332-56-20