Detection of disturbed forest ecosystems in the forest-steppe zone using  reflectance values
  Terekhin E.A.
   
  Belgorod State University, Belgorod,   Russia
 PDF
  PDF
Abstract:
This  paper presents results of the assessment of discriminant analysis  potentialities for detecting disturbed forest ecosystems in the forest-steppe  zone using their reflectance spectrum properties. A new method is proposed for  the automated detection of disturbed forest stands among forest-covered lands, based on the discriminant  analysis of the magnitude of changes in the reflectance in various spectral  ranges. Using experimental data from 1836 forest areas typical of the  forest-steppe zone of the Central Chernozem region, we propose equations that  allow a specific forest area to be classified as disturbed or undisturbed  forests in an automated mode. The accuracy of disturbed forest detection is  about 90%. It is found that variations in the short-wave infrared reflectance  are most informative for disturbed forest land detection when compared with the  reflectance variations detected by the Landsat sensors in the other spectral  ranges.
Keywords:
disturbed  forest ecosystems, stepwise discriminant analysis, remote  sensing, Landsat, reflectance spectrum properties
Citation:
Terekhin EA. Detection of  disturbed forest ecosystems in the forest-steppe zone using reflectance values.  Computer Optics 2019; 43(3): 412-418.  DOI: 10.18287/0134-2452-2019-43-3-412-418.
References:
  - Bartalev SA,  Kuryatnikova TS, Stibig H. Methods for the analysis of time-series of  high-resolution satellite images for the assessment of logging in the taiga [In  Russian] Sovremennye problemy distantsionnogo  zondirovaniya Zemli iz kosmosa 2005; 2(2): 217-227.
- Viola P, Jones MJ. Rapid  object detection using a boosted cascade of simple features. Proc IEEE Conf on  Comp Vision and Pattern Recogn (CVPR 2001) 2001.Kennedy  R, Yang Z, Cohen W. Detecting trends in forest disturbance and recovery using  yearly Landsat time series: 1. LandTrendr – Temporal segmentation algorithms.  Remote Sensing of Environment 2010; 114(12): 2897-2910. DOI: 10.1016/j.rse.2010.07.008.
- Hermosilla T, Wulder MA White JC, Coops NC, Hobart GW. Regional  detection, characterization, and attribution of annual forest change from 1984  to 2012 using Landsat-derived time-series metrics. Remote Sensing of  Environment 2015; 170: 121-132. DOI: 10.1016/j.rse.2015.09.004.
 
- ElsakovVV, Marushak IО. Spectrazonal satelite  images in estimation of climatic trends of forest vegetation on west slopes of  Subpolar polar Ural [In Russian] Computer Optics.  2011; 35(2): 281-286. 
 
- Zhirin VM, Knyazeva SP, Eydlina SV. Dynamics of  spectral brightness for species/age structure of groups of the forest types on  Landsat satellite images [In Russian] Lesovedeniye. 2014; 5: 3-12. 
 
- Senf C, Pflugmacher D, Hostert P, Seidl R. Using  Landsat time series for characterizing forest disturbance dynamics in the coupled  human and natural systems of Central Europe. ISPRS Journal of Photogrammetry  and Remote Sensing 2017; 130: 453-463. DOI: 10.1016/j.isprsjprs.2017.07.004.
 
- Terekhin EA. Estimation of forest ecosystems  disturbance in the southwest of Central Russian Upland using remote sensing  data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 2017;  14(4): 112-124. DOI:  10.21046/2070-7401-2017-14-4-112-124.
 
- Isaev AS, Korovin GN.  Large-Scale Changes in Eurasian Boreal  Forests and Methods of Their Assessment Using Space Information [In Russian]. Lesovedeniye.  2003; 2: 3-9.
 
- Hussain M, Chen D, Cheng A, Wei H, Stanley  D. Change detection from remotely sensed images: From pixel-based to  object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing  2013; 80: 91-106. DOI: 10.1016/j.isprsjprs.2013.03.006. 
 
- Zhu Z. Change detection using Landsat time  series: A review of frequencies, preprocessing, algorithms, and applications.  ISPRS Journal of Photogrammetry and Remote Sensing 2017; 130: 370-384. DOI:  10.1016/j.isprsjprs.2017.06.013. 
 
- Terekhin EA. GIS-modeling of forest  ecosystems disturbance using multiyear remote sensing data [In  Russian]. Geoinformatika 2017; 3: 56-62.
 
- Cohen WB, Healey SP, Yang Z, Stehman SV,  Brewer CK, Brooks EB, Gorelick N, Huang C, Hughes MJ, Kennedy RE, Loveland  TR, Moisen GG, Schroeder TA, Vogelmann JE, Woodcock CE, Yang L, Zhu Z. How similar are forest disturbance maps derived from  different Landsat time series algorithms? Forests 2017; 8(4): 98. DOI:  10.3390/f8040098. 
 
- Hislop S, Jones S, Soto-Berelov M,  Skidmore A, Haywood A, Nguyen TH. A fusion approach to forest disturbance  mapping using time series ensemble techniques. Remote Sensing of Environment  2019; 221: 188-197. DOI: 10.1016/j.rse.2018.11.025. 
 
- Haywood A, Verbesselt J, Baker PJ. Mapping  disturbance dynamics in wet sclerophyll forests using time series Landsat. International  Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences  - ISPRS Archives 2016; 41: 633-641.
 
- Wulder MA, White JC, Loveland TR, Woodcock  CE, Belward AS, Cohen WB, Fosnight  EA, Shaw J, Masek JG, Roy DP. The global Landsat archive: Status, consolidation, and  direction. Remote Sensing of Environment 2016; 185: 271-283. DOI:  10.1016/j.rse.2015.11.032. 
 
- Li P, Jiang L, Feng Z. Cross-comparison of  vegetation indices derived from Landsat-7 enhanced thematic mapper plus (ETM+)  and Landsat-8 operational land imager (OLI) sensors. Remote Sensing 2014; 6(1):  310-329. DOI: 10.3390/rs6010310. 
- Khalafyan AA. STATISTICA 6. Statistical analysis  [In Russian]. Moscow:  "Binom-Press" Publisher; 2007.
  
  © 2009, IPSI RAS
  151,  Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7  (846)  242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing   editor), Fax: +7 (846) 332-56-20