Technology of enhancing image detalization with nonlinear correction of  highly gradient fragments
  Fursov V.A., Goshin Ye.V.,  Medvedeva K.S.
   
  Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34;
  IPSI RAS – Branch of the  FSRC “Crystallography and Photonics” RAS, 
    443001, Samara, Russia,  Molodogvardeyskaya 151
 
 PDF
  PDF
Abstract:
The  article is devoted to the problem of improving the quality of images recorded  using low-resolution optical instruments, including diffraction-based cameras.  A two-stage image correction technology is proposed. At the first stage, the  correction is carried out using a linear FIR filter with a centrally symmetric  frequency response in the form of quadratic and exponential functions. The  resulting image is then processed with a non-linear filter that performs  computer retouching of image areas characterized by a noticeable brightness  difference. This procedure is only performed on those pixels in which the  absolute value of gradients in different directions is sufficiently high, that  is, they are located on the borders of areas with different intensity levels.  This allows us to avoid noise amplification in the background, which is typical  of traditional filters. The examples of the implementation are provided,  showing the possibility of achieving high sharpness and illustrating how the  filter can be adjusted by visual perception.
Keywords:
image  processing, FIR filter, nonlinear filter, centrally symmetric  frequency response, blind identification
Citation:
Fursov VA, Goshin YeV, Medvedeva KS. Technology of enhancing image detalization with nonlinear correction of  highly gradient fragments. Computer Optics 2019; 43(3): 484-491. DOI:  10.18287/2412-6179-2019-43-3-484-491.
References:
  - Pratt W. Digital image processing.  New York, NY:  John Wiley and Sons Inc; 1978.
- Lagendijk R, Biemond  J. Basic methods for image restoration and identification. London: Academic Press, 2000.
- Soifer VA, ed. Computer  image processing, Part II: Methods and algorithms. VDM Verlag Dr. Müller; 2010. ISBN: 978-3-6391-7545-5. 
 
- Nikonorov A,  Petrov M,  Bibikov S, Yuzifovich Y, Yakimov P, Kazanskiy N, Skidanov R, Fursov V. Comparative evaluation of deblurring techniques for  Fresnel lens computational imaging. 23rd  International Conference on Pattern Recognition (ICPR) 2016: 775-780. DOI: 10.1109/ICPR.2016.7899729. 
 
- Nikonorov  AV, Petrov MV, Bibikov SA, Kutikova VV, Morozov AA, Kazanskiy NL. Image restoration in diffractive  optical systems using deep learning and deconvolution. Computer Optics 2017;  41(6): 875-887. DOI: 10.18287/2412-6179-2017-41-6-875-887. 
 
- Steve A. FIR filter design by windowing: Concepts and  the rectangular window. Source: <https://www.allaboutcircuits.com/technical-articles/finite-impulse-response-filter-design-by-windowing-part-i-concepts-and-rect/>. 
 
- Petrou  M, Petrou C. Image processing: fundamentals. 2nd ed. Chichester, West Sussex: John Wiley and Sons Ltd; 2010. ISBN: 978-0-470-74586-1. 
 
- Nikonorov A,  Bibikov S, Myasnikov V, Yuzifovich Y, Fursov V. Correcting color and  hyperspectral images with identification of distortion model. Patt Recogn Lett  2016; 83(2): 178-187. DOI:  1016/j.patrec.2016.06.027. 
 
- Bavrina AYu, Myasnikov VV, Sergeev AV. Method  of parametric estimation of optoelectronics tract of remote sensed optical  image formation [In Russian]. Computer Optics 2011; 35(4): 500-507. 
 
- Lagendijk R, Biemond J. Basic methods for image  restoration and identification. London:  Academic Press; 2000. 
 
- Saad E, Hirakawa K. Defocus blur-invariant  scale-space feature extractions. IEEE Trans Image Proces 2016; 25(7):  3141-3156.
 
- Tian D,  Tao D.Coupled learning for facial deblur. IEEE Trans Image Process  2016; 25(2): 961-972.
 
- Peng Y-T, Cosman  PC.Underwater image restoration based on image blurriness and light  absorption. IEEE Trans Image Process 2017; 26(4): 1579-1594.
 
- Zhu X, Cohen S, Schiller  S, Milanfar P. Estimating spatially varying defocus blur from a single image. IEEE Trans Image Process 2013;  22(12): 4879-4891. 
 
- Yan R, Shao L. Blind image blur estimation via  deep learning. IEEE Trans Image Process 2016; 25(4): 1910-1921. 
 
- Huang J, Feng H, Xu  Z, Li Q, Chen Y. A robust deblurring algorithm for noisy images with just  noticeable blur. Optik 2018; 168: 577-589. 
 
- Tan J, Yang K, Song  S, Xing T, Fang D. Mobile-deblur: A clear image will on the smart device. 3rd  International Conference on Big Data Computing and Communications (BIGCOM)  2017: 97-105. 
 
- Mustaniemi J,  Kannala J, Särkkä S, Matas J, Heikkilä J. Fast motion deblurring for feature  detection and matching using inertial measurements. 24th  International Conference on Pattern Recognition (ICPR) 2018: 3068-3073. 
 
- Aittala M, Durand  F. Burst image deblurring using permutation invariant convolutional neural  networks. Proceedings of the European Conference on Computer Vision (ECCV)  2018: 731-747. 
 
- Almeida M, Almeida L. Blind and semi-blind  deblurring of natural images. IEEE Trans Image Process 2010; 19(1): 36-52. 
 
- Fursov  VA, Fatkhutdinova EF. The technology of correction of dynamic distortions on  mobile devices [In Russian]. CEUR Workshop Proceedings 2018; 2260: 468-479. 
 
- Fursov VA. Identification of square-exponential  FIR-filter parameters in the absence of a test image. Procedia Engineering  2017; 201: 206-212. DOI: 10.1016/j.proeng.2017.09.611.
- Fursov VA. Constructing FIR-filters for a  given parametrical class of frequency response for defocus correction [In  Russian]. Computer Optics 2016; 40(6): 878-886. DOI:  10.18287/2412-6179-2016-40-6-878-886. 
 
- Fursov, VA. Constructing a  quadratic-exponential FIR-filter with an extended frequency response midrange  [In Russian]. Computer Optics 2018; 42(2): 297-305. DOI:  10.18287/2412-6179-2018-42-2-297-305. 
  
  © 2009, IPSI RAS
  151,  Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7  (846)  242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing   editor), Fax: +7 (846) 332-56-20