The accuracy dependency investigation of simultaneous localization and mapping on the errors from  mobile device sensors
  Myasnikov  V.V., Dmitriev  E.A.
   
  Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34;
  IPSI RAS – Branch of the  FSRC “Crystallography and Photonics” RAS, 
    443001, Samara, Russia,  Molodogvardeyskaya 151
 
 PDF
  PDF
Abstract:
Monocular Simultaneous  Localization and Mapping (SLAM) is one of the most complex and well-known  problems, affecting several scientific fields: robotics, computer vision,  virtual reality. This paper aims to study the SLAM problem for the mobile  device with a monocular camera and sensors: accelerometer, gyroscope and  digital compass. The latter allow to obtain an additional estimation of a  mobile device position and orientation. The aim is to assess the potential  suitability and efficiency of using extra information from inertial sensors to  improve the solution quality and to reduce the time to obtain the solution. The  experimental part of the study, including both model and field experiments,  allowed to determine the requirements for permissible errors introduced by the  sensors of the mobile device. For a specific model of a mobile device, it is  shown that the electronic compass meets these requirements, while the errors of  the inertial sensors used to determine the movements are unacceptably large.
Keywords:
SLAM,  visual odometry, scene reconstruction, mapping, mobile device, inertial  sensors, compass
Citation:
Myasnikov VV, Dmitriev  EA. The accuracy dependency investigation of simultaneous localization and  mapping on the errors from mobile device sensors. Computer Optics 2019; 43(3): 492-503.  DOI: 10.18287/2412-6179-2019-43-3-492-503.
References:
  - Horn BKP. Robot vision. London, Cambridge:  The MIT Press; 1986.
- Forsyth D, Ponce J.  Computer vision: A modern approach. Upper  Saddle River, NJ: Prentice-Hall; 2003.
- Shapiro L. Computer vision and image processing. Academic Press; 1992.
 
- Durrant-Whyte H, Bailey T.  Simultaneous localization and mapping (SLAM): Part I. The essential algorithms.  IEEE Robot Automat Mag 2006; 13(2): 99-110.
 
- Durrant-Whyte H, Bailey T.  Simultaneous localization and mapping (SLAM): Part II. State of the art.  IEEE Robot Automat Mag 2006; 13(3): 108-117.
 
- Cadena  C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J, Reid I, Leonard JJ. Past, present, and future of  simultaneous localization and mapping: Toward the robust-perception age. IEEE  Transactions on Robotics 2016; 32(6): 1309-1332.
 
- Younes  G, Asmar D, Shammas E, Zelek J. Keyframe-based monocular SLAM: design, survey,  and future directions. Robot Auton Syst 2017; 98: 67-88.
 
- Goshin  YeV, Fursov AV. Solving a camera autocalibration problem with a conformed  indentification method [In Russian]. Computer Optics 2012; 36(4): 605-611.
 
- Kotov AP, Fursov VA, Goshin YeV. Technology for fast 3D-scene reconstruction  from stereo images [In Russian]. Computer Optics 2015; 39(4): 600-605.  DOI: 10.18287/0134-2452-2015-39-4-600-605.
 
- Myasnikov, VV. Model-based gradient  field descriptor as a convenient tool for image recognition and analysis [In  Russian]. Computer Optics 2012; 36(4): 596-604. 
 
- Fischler  MA, Bolles RC. Random sample consensus: A paradigm for model fitting with applications  to image analysis and automated cartography. Communications of the ACM 1981; 24(6): 381-395.
 
- Levenberg  KA. Method for the solution of certain non-linear problems in least squares. Quarterly  of Applied Mathematics 2012; 2(2): 164-168.
 
- Marquardt  D. An algorithm for least-squares estimation of nonlinear parameters. SIAM  Journal on Applied Mathematics 1963; 11(2): 431-441.
 
- Montemerlo M, Thrun S, Koller D,  Wegbreit D. FastSLAM: A factored solution to the simultaneous localization and  mapping problem. Proc AAAI Nat Conf Artif Intell 2002: 593-598. 
 
- Klein G, Murray D. Parallel tracking  and mapping for small AR workspaces. Proc IEEE and ACM Int Symp Mixed Augmented  Reality (ISMAR) 2007: 225-234.
 
- Engel J, Sturm J, Cremers D.  Semi-dense visual odometry for a monocular camera. Int Conf Computer  Vision (ICCV) 2013: 1449-1456. 
 
- Engel  J, Sturm J, Cremers D. LSD-SLAM: Large-scale direct monocular SLAM. European  Conference on Computer Vision (ECCV) 2017: 834-849. 
 
- Mur-Artal R, Montiel JMM, Tardos JD. ORB-SLAM: A versatile and accurate  monocular SLAM. IEEE Transactions on Robotics 2017; 31(5): 1147-1163. 
 
- Newcombe RA, Lovegrove SJ, Davison  AJ. DTAM: dense tracking and mapping in real-time. IEEE Int Conf  Computer Vision 2011: 2320-2327. 
 
- Stühmer J, Gumhold S, Cremers D.  Real-time dense geometry from a handheld camera. Pattern Recognition (DAGM)  2010: 11-20. 
 
- Tanskanen P, Kolev K, Meier L, Paulsen FC, Saurer O, Pollefeys M. Live metric 3D reconstruction on mobile phones.  IEEE Int Conf Computer Vision 2013: 65-72. 
 
- Roxas M, Oishi T. Real-time  simultaneous 3D reconstruction and optical flow estimation. IEEE Winter  Conference on Applications of Computer Vision (WACV) 2018: 885-893.
 
- Schuster  R, Wasenmüller O, Didier S. Dense scene flow from stereo disparity and optical  flow. Computer Science in Cars Symposium 2018.
 
- Kummerle R, Steder B, Dornhege C, Ruhnke M, Grisetti G, Stachniss C,  Kleiner A. On measuring the accuracy of SLAM algorithms. Autonomous Robots 2009;  27(4): 387-407.
 
- Ma Z, Qiao Y, Lee B, Fallon B.  Experimental evaluation of mobile phone sensors. 24th IET Irish  Signals and Systems Conference 2013: 49. 
 
- Kok M,  Hol JD, Schon TB. Using inertial sensors for position and orientation  estimation. Foundations and Trends in Signal Processing 2017; 11(1-2): 1-153.
 
- Titterton DH, Weston JL.  Strapdown inertial navigation technology. London,  UK, Reston, Virginia:  Institution of Engineering and Technology; 1996. ISBN: 978-0-86341-358-2.
 
- Android. Source. Develop. Sensor Types.  Source: áhttps://source.android.com/devices/sensors/sensor-types#rotation_vectorñ. 
  
  © 2009, IPSI RAS
  151,  Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7  (846)  242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing   editor), Fax: +7 (846) 332-56-20