(43-5) 12 * << * >> * Russian * English * Content * All Issues
  
Limiting capabilities of  self-mixing interferometry upon sawtooth modulation of a semiconductor laser wavelength
D.A. Usanov1, A.V. Skripal1, S.Yu. Dobdin1, A.V. Dzhafarov1, I.S. Sokolenko1
  1 Saratov State University, 410012, Saratov, Russia, Astrakhanskaya 83
 PDF, 854 kB
  PDF, 854 kB
DOI: 10.18287/2412-6179-2019-43-5-796-802
Pages: 796-802.
Full text of article: Russian language.
 
Abstract:
This paper discusses a  self-mixing interferometry method for measuring distances upon sawtooth  modulation of the wavelength of laser radiation. Conditions under which the  distance obtained from the spectrum of the modeled autodyne signal coincides  with the distance specified in computer simulation are determined. The limiting  capabilities of the method are theoretically substantiated for the increased  range of deviations of the laser wavelength. The estimation of the limiting  capabilities of the distance measurement method on the spectrum of the autodyne  signal gives 10 microns at a wavelength of 650 nm at a 5-nm deviation of laser  radiation wavelength. We also discuss difficulties of attaining the limiting  accuracy of distance measurements associated with the nonlinear dependence of  the wavelength emitted by a laser diode on its supply current and the need to  analyze the self-mixing signal at high frequencies.
Keywords:
semiconductor laser,  self-mixing interferometry, distance measurement, wavelength modulation.
Citation:
  Usanov DA, Skripal AV, Dobdin  SYu, Dzhafarov AV, Sokolenko IS. Limiting capabilities of self-mixing interferometry  upon sawtooth modulation of a semiconductor laser wavelength. Computer Optics  2019; 43(5): 796-802. DOI: 10.18287/2412-6179-2019-43-5-796-802. 
Acknowledgements:
The work was funded by the  Ministry of education and science of the Russian Federation (state task  №8.7628.2017) and the Russian Science Foundation (project No. 19-79-00122).
References:
  - Bosch T, Lescure M, eds. Optical distance measurement  methods can technically be put into three categories: interferometry,  time-of-flight and triangulation methods. Selected Papers on Laser Distance  Measurement, SPIE Milestone Series 1995; 115: 738.
- Kilpelä A, Pennala R, Kostamovaara J. Precise pulsed  time-of-flight laser range finder for industrial distance measurements. Review  of Scientific Instruments 2001; 72: 2197-2202. 
- Lee J, Kim Y-J, Lee K, Lee S, Kim S-W. Time-of-flight  measurement with femtosecond light pulses. Nat Photon 2010; 4(10): 716-720.
- Hintikka M, Kostamovaara J. Experimental investigation  into laser ranging with sub-ns laser pulses. IEEE Sensors Journal 2018; 18(3):  1047-1053.
- Ji Z, Leu MC. Design of optical triangulation devices.  Opt Laser Technol 1989; 21(5): 339-341.
- Clarke TA, Grattan KTV, Lindsey NE. Laser-based  triangulation techniques in optical inspection of industrial structures. Proc  SPIE 1991; 1332: 474-487. DOI: 10.1117/12.51096
- Reza SA, Khwaja TS, Mazhar MA, Niazi HK, Nawab R.  Improved laser-based triangulation sensor with enhanced range and resolution  through adaptive optics-based active beam control. Appl Opt 2017; 56(21):  5996-6006.
- Daendliker R, Hug K, Politch J, Zimmermann E.  High-accuracy distance measurements with multiple-wavelength interferometry.  Opt Eng 1995; 34(8): 2407-2413. DOI: 10.1117/12.205665.
- Berkovic G, Shafir E. Optical methods for distance and  displacement measurements. Adv Opt Photon 2012; 4(4): 441-471. DOI:  10.1364/AOP.4.000441.
- Amann MC, Bosch TM, Lescure M, Myllylae RA, Rioux M.  Laser ranging: a critical review of usual technique for distance measurement.  Opt Eng 2001; 40(1): 10-19.
- Kliese R, Taimre T, Bakar AAA, Lim YL, Bertling K,  Nikolić M, Rakić AD. Solving self-mixing equations for arbitrary feedback  levels: a concise algorithm. Appl Opt 2014; 53(17): 3723-3736. DOI:  10.1364/AO.53.003723.
- Usanov DA, Skripal AV. Measurement of micro-and  nanovibrations and displacements using semiconductor laser autodynes. Quant  Electron 2011; 41(1), 86-94.
- Li D., Huang Z., Mo W., Ling Y., Zhang Z., Huang Z.  Equivalent wavelength self-mixing interference vibration measurements based on  envelope extraction Fourier transform algorithm. Applied Optics; 2017; 56(31),  P.8584-8591. https://doi.org/10.1364/AO.56.008584
- Zhu W, Chen Q, Wang Y, Luo H, Wu H, Ma B. Improvement  on vibration measurement performance of laser self-mixing interference by using  a pre-feedback mirror. Opt Laser Eng 2018; 105: 150-158.
- Norgia M, Donati S. A displacement-measuring  instrument utilizing self-mixing interferometry. IEEE Transactions On  Instrumentation and Measurement 2003; 52(6): 1765-1770.
- Xu J, Huang L, Yin S, Gao B, Chen P. All-fiber  self-mixing interferometer for displacement measurement based on the quadrature  demodulation technique. Opt Rev 2018; 25(1): 40-45.
- Guo D, Shi L, Yu Y, Xia W, Wang M. Micro-displacement  reconstruction using a laser self-mixing grating interferometer with multiple  diffraction. Opt Express 2017; 25(25): 31394-31406. DOI: 10.1364/OE.25.031394.
- Koelink M.H., Slot M., F.F.de Mul. Laser Doppler  velocimeter based on the self-mixing effect in a fiber-coupled semiconductor  laser: theory. Applied Optics; 1992; Vol.31, P.3401-3408. 
- Scalise L, Yu YG, Giuliani G, Plantier G, Bosch T.  Self-mixing laser diode velocimetry: Application to vibration and velocity  measurement. IEEE Transactions on Instrumentation and Measurement 2004; 53(1):  223-232. 
- Lin H, Chen J, Xia W, Hao H, Guo D, Wang M. Enhanced  self-mixing Doppler velocimetry by fiber Bragg grating. Opt Eng 2018; 57(5):  051504. DOI: 10.1117/1.OE.57.5.051504.
- Guo D, Jiang H, Shi L, Wang M. Laser self-mixing  grating interferometer for MEMS accelerometer testing. IEEE Photonics Journal  2018; 10(1): 1-9.
- Usanov DA, Skripal AV, Dobdin SY. Determining  acceleration from micro- and nanodisplacements measured using autodyne signal  of semiconductor laser on quantum-confined structures. Technical Physics  Letters 2010; 36(11): 1009-1011.
- Usanov DA, Skripal AV, Dobdin SY. The definition of acceleration  unevenly accelerated micro- and nanosleep object autodyne signal of a  semiconductor laser [In Russian]. Nano- and Microsystem Technology 2010; 10:  51-54.
- Olesen H, Osmundsen JH, Tromborg B. Nonlinear dynamics  and spectral behavior for an external cavity laser. IEEE J Quantum Electron  1986; 22(6): 762-773.
- Schunk N, Petermann K. Numerical analysis of the  feedback regimes for a single-mode semiconductor laser with external feedback.  IEEE J Quantum Electron 1988; 24(7): 1242-1247.
- Suharev AG, Napartovich AP. Harmonic modulation of  radiation of an external-feedback semiconductor laser [In Russian]. Quant  Electron 2007; 37(2): 149-153.
- Giuliani G, Norgia M, Donati S, Bosch T. Laser diode  self-mixing technique for sensing applications. J Opt A: Pure Appl Opt 2002;  4(6): S283-S294.
- Norgia M, Magnani A, Pesatori A. High resolution  self-mixing laser rangefinder. Review of Scientific Instruments 2012; 83(4):  045113. DOI: 10.1063/1.3703311.
- Kou K, Li X, Li L, Xiang H. Injected current reshaping  in distance measurement by laser self-mixing interferometry. Appl Opt 2014;  53(27): 6280-6286. DOI: 10.1364/AO.53.006280.
- Usanov DA, Skripal AV, Astakhov EI, Kostuchenko IS,  Dobdin SY. Autodyne interferometry of a distance using a semiconductor laser  with current modulation in the wavelength of the radiation. Computer Optics  2018; 42(1): 54-59. DOI: 10.18287/2412-6179-2018-42-1-54-59.
- Astakhov EI, Usanov DA, Skripal AV, Dobdin SYu. Self-mixing  interferometry of distance at wavelength modulation of semiconductor laser. Izvestiya  of Saratov University. New series. Series Physics 2015; 15(3): 12-18. DOI:  10.18500/1817-3020-2015-15-3-12-18.
  
  
  
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7  (846)  242-41-24 (ответственный
      секретарь), +7 (846)
      332-56-22 (технический  редактор), факс: +7 (846) 332-56-20