(43-5) 20 * << * >> * Russian * English * Content * All Issues
  
Scene distortion detection  algorithm using multitemporal remote sensing images
A.M. Belov1, A.Y. Denisova1
  1 Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia
 PDF, 1528 kB
  PDF, 1528 kB
DOI: 10.18287/2412-6179-2019-43-5-869-885
Pages: 869-885.
Full text of article: Russian language.
Abstract:
Multitemporal remote sensing  images of a particular territory might include accidental scene distortions.  Scene distortion is a significant local brightness change caused by the scene  overlap with some opaque object or a natural phenomenon coincident with the  moment of image capture, for example, clouds and shadows. The fact that  different images of the scene are obtained at different instants of time makes  the appearance, location and shape of scene distortions accidental. In this  article we propose an algorithm for detecting accidental scene distortions  using a dataset of multitemporal remote sensing images. The algorithm applies  superpixel segmentation and anomaly detection methods to get binary images of  scene distortion location for each image in the dataset. The algorithm is  adapted to handle images with different spectral and spatial sampling  parameters, which makes it more multipurpose than the existing solutions. The  algorithm's quality was assessed using model images with scene distortions for  two remote sensing systems. The experiments showed that the proposed algorithm  with the optimal settings can reach a detection accuracy of about 90% and a  false detection error of about 10%. 
Keywords:
accidental scene-distortions  detection, remote sensing image fusion, super-pixel image segmentation, anomaly  detection.
Citation:
  Belov AM, Denisova AY. Scene  distortion detection algorithm using multitemporal remote sensing images.  Computer Optics 2019; 43(5): 869-885. DOI: 10.18287/2412-6179-2019-43-5-869-885.
 
Acknowledgements:
The work was partly funded by  the Russian Foundation for Basic Research under RFBR grants ## 18-07-00748 a,  16-29-09494 ofi_m and under the project “Creation of a Geographic Information  Hub of Big Data”, carried out as part of the Competence Center Program of the  National Technological Initiative “Big Data Storage and Analysis Center”,  supported by the Ministry of Science and Higher Education of the Russian  Federation under an agreement between M.V. Lomonosov Moscow State University  and the Project Support Foundation of the National Technology Initiative, dated  December 11, 2018 No. 13/1251/2018.
References:
  - Pasetto D, Arenas–Castro S, Bustamante J,  Casagrandi R, Chrysoulakis N, Cord AF, Dittrich A, Domingo-Marimon C, El Serafy  G, Karnieli A, Kordelas GA, Manakos I, Mari L, Monteiro A, Palazzi E,  Poursanidis D, Rinaldo A, Rinaldo S, Terzago S, Ziemba A, Ziv G, Kordelas GA.  Integration of satellite remote sensing data in ecosystem modelling at local  scales: Practices and trends. Methods in Ecology and Evolution 2018; 9 :  1810-1821.
- Anshakov GP, Raschupkin AV, Zhuravel YN. Hyperspectral  and multispectral Resurs-P data fusion for increase of their informational  content. Computer optics 2015; 39(1): 77-82.
- Belov AM, Denisova AY. Spectral and spatial  super-resolution method for Earth remote sensing image fusion. Computer Optics  2018; 42(5): 855-863. DOI: 10.18287/2412-6179- 2018-42-5-855-863.
- Denisova AYu, Myasnikov VV. Algorithms of linear  spectral mixture analysis for hyperspectral images using base map. Computer  Optics 2014; 38(2): 297-303.
- Sun L, Mi X, Wei J, Wang J, Tian X, Yu  H, Gan P. A cloud detection algorithm-generating method for remote sensing  data at visible to short-wave infrared wavelengths. ISPRS journal of  photogrammetry and remote sensing 2017; 124: 70-88.
- Thompson DR, Green RO, Keymeulen D, Lundeen  SK, Mouradi Y, Nunes DC, Castaño R, Chien SA. Rapid spectral cloud screening  onboard aircraft and spacecraft. IEEE Transactions on Geoscience and Remote  Sensing 2014; 52: 6779-6792.
- Zhu X, Helmer EH. An automatic method for screening  clouds and cloud shadows in optical satellite image time series in cloudy  regions. Remote Sensing of Environment 2018; 214: 135-153.
- Li J, Menzel WP, Yang Z, Frey RA, Ackerman SA.  High-spatial-resolution surface and cloud-type classification from MODIS  multispectral band measurements. Journal of Applied Meteorology 2003; 42:  204-226.
- Luo S, Li H, Shen H. Shadow removal based on  clustering correction of illumination field for urban aerial remote sensing  images. 2017 IEEE International Conference on Image Processing (ICIP) 2017;  485-489.
- Mostafa Y. A review on various shadow detection and  compensation techniques in remote sensing images. Canadian Journal of Remote  Sensing 2017; 43: 545-562.
- Movia A, Beinat A, Crosilla F. Shadow detection and  removal in RGB VHR images for land use unsupervised classification. ISPRS  Journal of Photogrammetry and Remote Sensing 2016; 119: 485-495.
- Champion N. Automatic detection of clouds and shadows  using high resolution satellite image time series. International Archives  of the Photogrammetry, Remote Sensing & Spatial Information Sciences 2016;  41(B3): 475-9.
- Breunig MM, Kriegel HP, Ng RT, Sander J. LOF:  identifying density-based local outliers. ACM sigmod record 2000; 29(2):  93-104.
- Domingues R, Filippone M, Michiardi P, Zouaoui J. A  comparative evaluation of outlier detection algorithms: Experiments and  analyses. Pattern Recognition 2018; 74: 406-421.
- Zhao H, Jia G, Li N. Transformation from hyperspectral  radiance data to data of other sensors based on spectral superresolution. IEEE  Trans. Geosci. Remote Sens. 2010; 48(11): 3903-3912.
- Farsiu S, Robinson MD, Elad M, Milanfar P. Fast  and robust multiframe super resolution. IEEE transactions on image processing  2004; 13(10): 1327-1344.
- Student. The probable error of a mean. Biometrika  1908; 1-25.
- Achanta R, Shaji A, Smith K, Lucchi  A, Fua P, Süsstrunk S. SLIC Superpixels. EPFL Technical Report 2010;  149300: 1-15.
- Achanta R, Shaji A, Smith K, Lucchi  A, Fua P, Süsstrunk S. SLIC superpixels compared to state-of-the-art  superpixel methods. IEEE transactions on pattern analysis and machine  intelligence 2012; 34(11): 2274-2282.
- Hartigan JA, Wong MA. Algorithm AS 136: A k-means  clustering algorithm. Journal of the Royal Statistical Society. Series C  (Applied Statistics) 1979; 28(1): 100-108.
- Margulis D. Photoshop LAB color: The canyon conundrum  and other adventures in the most powerful colorspace. Peachpit Press; 2005.
- Vane G, Green RO, Chrien TG, Enmark HT, Hansen EG,  Porter WM. The airborne visible/infrared imaging spectrometer (AVIRIS). Remote  sensing of environment 1993; 44(2-3) : 127-143.
- Bartoš M. Cloud and Shadow Detection in Satellite  Imagery. Master Thesis. Czech Technical University in Prague Faculty of  Electrical Engineering. Prague, 2017; 1-57.
- Xu M, Jia X, Pickering M, Plaza AJ. Cloud removal  based on sparse representation via multitemporal dictionary learning. IEEE  Transactions on Geoscience and Remote Sensing 2016; 54(5): 2998-3006.
- Schowengerdt RA. Remote sensing: models and  methods for image processing. Elsevier; 2006. 
- Spot-7 Satellite Sensor. Source:  <https://www.satimagingcorp.com/satellite-sensors/spot-7/>.
- Russian remote sensing constellation by date  (01.03.2015). Geomatics 2015; 1: 106-112.
- Farsiu S, Elad M, Milanfar P. Multiframe demosaicing  and super-resolution of color image. IEEE Transactions on Image Processing  2006; 15: 141-159.
- Matlab. Source: <https://www.mathworks.com/products/matlab.html>  .
- Janssens JHM, Flesch I, Postma EO. Outlier detection with one-class  classifiers from ML and KDD. Proceedings of the Eighth International Conference  on Machine Learning and Applications 2009; 147-153.
    
  
  
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7  (846)  242-41-24 (ответственный
      секретарь), +7 (846)
      332-56-22 (технический  редактор), факс: +7 (846) 332-56-20