(44-2) 02 * << * >> * Russian * English * Content * All Issues

Sorting Laguerre-Gaussian beams by radial numbers via intensity moments

A.V. Volyar 1, M. Bretsko 1, Ya. Akimova 1, Yu. Egorov  1

Physics and Technology Institute of V.I. Vernadsky Crimean Federal University,

Academician Vernadsky 4, 295007, Simferopol, Republic of Crimea, Russia

 PDF, 1451 kB

DOI: 10.18287/2412-6179-CO-677

Pages: 155-166.

Full text of article: Russian language.

We propose and experimentally implement a new technique for digitally sorting Laguerre-Gaussian (LG) modes by radial number at a constant topological charge, resulting from the pertur-bation of the original LG beam, or superposition thereof, by passing them through a thin dielectric diaphragm with various aperture radii. The technique is based on a digital analysis of higher-order intensity moments. Two types of perturbed beams are considered: non-degenerate and degenerate beams with respect to the initial radial number of the LG beam superposition. A diaphragm with a circular pinhole causes the appearance of a set of secondary LG modes with different radial num-bers, which are characterized by an amplitude spectrum. The digital amplitude spectrum makes it possible to recover the real LG modes and find the measure of uncertainty due to perturbation by means of information entropy. It is found that the perturbation of a complex beam leads to the appearance of a degenerate am-plitude spectrum since a single spectral line corresponds to a set of modes generated by M original Laguerre-Gaussian beams with different radial numbers. For the spectrum to be deciphered, we use M keys represented by the amplitude spectra of the nondegenerate perturbed beams in our ex-periment. However, the correlation degree decreases to 0.92.

information optics, vortex beams sorting, Shannon entropy.

Volyar AV, Bretsko MV, Akimova YaE, Egorov YuA. Sorting Laguerre-Gaussian beams by radial numbers via intensity moments. Computer Optics 2020; 44(2): 155-166. DOI: 10.18287/2412-6179-CO-677.

The work was funded by the Russian Foundation for Basic Research under RFBR grant No. 19-29-01233.


  1. Allen L, Padgett M. Introduction to phase-structured electro-magnetic waves. In Book: Andrews DL, ed. Structured light and its applications: An introduction to phase-structured beams and nanoscale optical forces. Ch 1. New York: El-sevier; 2008. DOI: 10.1016/B978-0-12-374027-4.00001-3.
  2. Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian modes. Phys Rev A 1992; 45: 8185. DOI: 10.1103/PhysRevA.45.8185.
  3. Padgett MJ, Molloy J, McGloin D, eds. Optical tweezers. London: Chapman and Hall; 2010. ISBN: 978-1-4200-7414-7.
  4. Alexeyev CN, Egorov YuA, Volyar AV. Mutual transformations of fractional-order and integer-order optical vortices. Phys Rev A 2017; 96: 063807. DOI: 10.1103/PhysRevA.96.063807.
  5. Bereznyi AE, Prokhorov AM, Sisakyan IN, Soifer VA. Bessel Optics [In Russian]. Proc Acad Sci USSR 1984; 274(4): 802-805.
  6. Golub MA, Prokhorov AM, Sisakyan IN, Soifer VA. Synthesis of spatial filters for investigation of the transverse mode composition of coherent radiation. Sov J Quant Electron 1982; 9: 1208-1209.
  7. Golub MA, Karpeev SV, Krivoshlykov SG, Prokhorov AM, Sisakyan IN, Soifer VA. An experimental-study into the power distribution over transverse-modes in a fiber-optic waveguide with the use of spatial filters. Kvantovaya Elektronika 1984; 11(9): 1869-1871.
  8. Golub MA, Karpeev SV, Kazanskiĭ NL, Mirzov AV, Sisakyan IN, Soĭfer VA, Uvarov GV. Spatial phase filters matched to transverse modes. Quantum Electronics 1988; 18(3): 392-393. DOI: 10.1070/QE1988v018n03ABEH011528.
  9. Abramochkin Е, VolostnikovV. Beam transformations and non-transformed beams. Opt Commun 1991; 83(1-2): 123-135. DOI: 10.1016/0030-4018(91)90534-K.
  10. Khonina SN, Kotlyar VV, Soifer VA, Jefimovs K, Turunen J. Generation and selection of laser beams represented by a superposition of two angular harmonics. J Mod Opt 2004; 51(5): 761-773. DOI: 10.1080/09500340408235551.
  11. Khonina SN, Kotlyar VV, Soifer VA, Paakkonen P, Turunen J. Measuring the light field orbital angular momentum using DOE. Optical Memory and Neural Networks 2001; 10(4): 241-255.
  12. Khonina SN, Kazanskiy NL, Soifer VA. Optical vortices in a fiber: mode division multiplexing and multimode self-imaging. In book: Yasin M, Harun SW, Arof H, eds. Recent progress in optical fiber research. Ch 15. Rijeka, Croatia: InTech; 2012: 327-352. DOI: 10.5772/28067.
  13. Kirilenko MS, Khonina SN. Information transmission using optical vortices. Optical Memory and Neural Networks 2013; 22(2): 81-89. DOI: 10.3103/S1060992X13020069.
  14. Kotlyar VV, Kovalev AA, Porfirev AP. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl Opt 2017; 56(14): 4095-4104. DOI: 10.1364/AO.56.004095.
  15. Alperin SN, Niederiter RD, Gopinath JT, Siements KE. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens. Opt Lett 2016; 41: 5019-5022. DOI: 10.1364/OL.41.005019.
  16. Volyar A, Bretsko M, Akimova Ya, Egorov Yu. Measurement of the vortex spectrum in a vortex-beam array without cuts and gluing of the wavefront. Opt Lett 2018; 43(22): 5635-5638. DOI: 10.1364/OL.43.005635.
  17. Volyar A, Bretsko M, Akimova Y, Egorov Y. Vortex avalanche in the perturbed singular beams. J Opt Soc Am A 2019; 36(6): 1064-1071. DOI: 10.1364/JOSAA.36.001064.
  18. Volyar A, Bretsko M, Akimova Y, Egorov Y. Measurement of the vortex and orbital angular momentum spectra with a single cylindrical lens. Appl Opt 2019; 58(21): 5748-5755. DOI: 10.1364/AO.58.005748.
  19. Volyar A, Bretsko M, Akimova Y, Egorov Y. Orbital angular momentum and informational entropy in perturbed vortex beams. Opt Lett 2019; 44(23): 2687-2690. DOI: 10.1364/OL.44.005687.
  20. Lavery MPJ, Berkhout GCG, Courtial J, Padgett MJ. Measurement of the light orbital angular momentum spectrum using an optical geometric transformation. J Opt 2011; 13(6): 064006.
  21. D’errico A, D’amelio R, Piccirillo B, Cardano F, Marrucc L. Measuring the complex orbital angular momentum spectrum and spatial mode decomposition of structured light beams. Optica 2017; 4(11): 1350-1357. DOI: 10.1364/OPTICA.4.001350.
  22. Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner AE, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Sci 2013; 340(6140): 1545-1548. DOI: 10.1126/science.1237861.
  23. Shields AJ, Dynes JF, Yuan ZI, Lucamarini M. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 2018; 557(7705): 400-403. DOI: 10.1038/s41586-018-0066-6.
  24. Karimi E, Santamato E. Radial coherent and intelligent states of paraxial wave equation. Opt Lett 2012; 37: 2484-2386. DOI: 10.1364/OL.37.002484.
  25. Karimi E, Giovannini D, Bolduc E, Bent N, Miatto FM, Padgett MJ, Boyd RW. Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference. Phys Rev A 2014; 89: 013829. DOI: 10.1103/PhysRevA.89.013829.
  26. Plick WN, Krenn M. Physical meaning of the radial index of Laguerre-Gauss beams. Phys Rev. A 2015; 92(6): 063841. DOI: 10.1103/PhysRevA.92.063841.
  27. Karimi E, Boyd RW, de la Hoz P, de Guise H, Řeháček J, Hradil Z, Aiello A, Leuchs G, Sánchez-Soto LL. Radial quantum number of Laguerre-Gauss modes. Phys Rev A 2014; 89(6): 063813. DOI: 10.1103/PhysRevA.89.063813.
  28. Malik M, Erhard M, Huber M, et al. Multi-photon entanglement in high dimensions. Nat Photon 2016; 10: 248-252. DOI: 10.1038/nphoton.2016.12.
  29. Gu X, Krenn M, Erhard M, Zeilinger A. Gouy phase radial mode sorter for light: Concepts and experiments. Phys Rev Lett 2018; 120(10): 103601. DOI: 10.1103/PhysRevLett.120.103601.
  30. Zhou Y, Mirhosseini M, Fu D, Zhao J, Rafsanjani SMH, Willner AE, Boyd RW. Sorting photons by radial quantum number. Phys Rev Lett 2017; 119(26): 263602. DOI: 10.1103/PhysRevLett.119.263602.
  31. Fu D, Zhou Y, Qi R, Oliver S, Wang Y, Rafsanjani SMH, Zhao J, Shi MZ, Zhang P, Boyd RW. Realization of a scalable Laguerre–Gaussian mode sorter based on a robust radial mode sorter. Opt Express 2018; 26(25): 33057-33065. DOI: 10.1364/OE.26.033057.
  32. Zhou Y, Mirhosseini M, Oliver S, Zhao J, Rafsanjani SMH, Lavery MPJ, Willner AE, Boyd RW. Using all transverse degrees of freedom in quantum communications based on a generic mode sorter. Opt Express 2019; 27(7): 10383-10394. DOI: 10.1364/OE.27.010383.
  33. Prudnikov AP, ed, Brychkov YA, Marichev OI. Integrals and series, special functions. Washington: Gordon and Breach; 1986.
  34. Flusser J, Suk T, Zitová B. Moments and moment invariants in pattern recognition. New York: John Wiley & Sons Inc; 2009. ISBN: 978-0-470-69987-4.
  35. Kotlyar VV, Kovalev AA, Porfirev AP. Methods for determining the orbital angular momentum of a laser beam. Computer Optics 2019; 43(1): 42-53. DOI: 10.18287/2412-6179-2019-43-1-42-53.
  36. Abramochkin E, Razueva E, Volostnikov V. General astigmatic transform of Hermite–Laguerre–Gaussian beams. J Opt Soc Am A 2010; 27(11): 2506-2513. DOI: 10.1364/JOSAA.27.002506.
  37. Phillips RL, Andrews LC. Spot size and divergence for Laguerre Gaussian beams of any order. Appl Opt 1983; 22: 643-644. DOI: 10.1364/AO.22.000643.
  38. Yu FTS. Entropy and information optics. 2nd ed. Boca Raton: CRC Press; 2017.
  39. Shannon CE. A mathematical theory of communication. Bell System Technical Journal 1948; 27(3): 379-423. DOI: 10.1002/j.1538-7305.1948.tb01338.x.
  40. Mirhosseini M, Magaña-Loaiza OS, O’Sullivan MN, Rodenburg B, Malik M, Lavery MPJ, Padgett MJ, Gauthier DJ, Boyd RW. High-dimensional quantum cryptography with twisted light. New J Phys 2015; 17: 033033. DOI: 10.1088/1367-2630/17/3/033033.
  41. Hollas JM. Modern spectroscopy. New York: John Wiley & Sons Inc; 2002. ISBN: 978-0-470-84416-8.


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20