(44-4) 03 * << * >> * Russian * English * Content * All Issues
  
Topological charge of optical vortices devoid of radial symmetry
  V.V. Kotlyar 1,2, A.A. Kovalev 1,2
 1 IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
 
     443001, Samara, Russia, Molodogvardeyskaya 151,
     2 Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34
 
 PDF, 1336 kB
  PDF, 1336 kB
DOI: 10.18287/2412-6179-CO-719
Pages: 510-518.
Full text of article: Russian language.
 
Abstract:
Here we theoretically  obtain values of the topological charge (TC) for vortex laser beams devoid of  radial symmetry: asymmetric Laguerre-Gaussian (LG) beams, Bessel-Gaussian (BG)  beams, Kummer beams, and vortex Hermite-Gaussian (HG) beams. All these beams  consist of conventional modes, namely, LG, BG, or HG modes, respectively.  However, all these modes have the same TC equal to that of a single constituent  mode n. Orbital angular momenta (OAM)  of all these beams, normalized to the beam power, are different and changing  differently with varying beam asymmetry. However, for arbitrary beam asymmetry,  TC remains unchanged and equals n.  Superposition of just two HG modes with the adjacent numbers (n, n+1)  and with the phase retardation of (pi)/2 yields a modal beam  with the TC equal to – (2n+1). Numerical simulation confirms the theoretical predictions.
Keywords:
topological charge, optical  vortex, asymmetric beam.
Citation:
  Kotlyar VV, Kovalev AA. Topological  charge of optical vortices devoid of radial symmetry. Computer Optics 2020; 44(4): 510-518. DOI:  10.18287/2412-6179-CO-719.
Acknowledgements:
  This  work was partly funded by the Russian Foundation for Basic Research under  project No. 18-29-20003 (section “Derivation of the  topological charge of asymmetric optical vortices”), the Russian Science  Foundation under project No. 18-19-00595 (section “Derivation of  the topological charge of Hermite-Gaussian vortex beams”, and the RF Ministry  of Science and Higher Education within a government project of FSRC “Crystallography and Photonics” RAS (section  “Numerical simulation results”).
References:
- Kotlyar VV, Kovalev AA,  Porfirev AP. Vortex laser beams. Boca    Raton: CRC Press; 2018. ISBN: 978-1-138-54211-2.
 
- Li S, Pan X, Ren Y, Liu  H, Yu S, Jing J. Deterministic generation of orbital-angular-momentum  multiplexed tripartite entanglement. Phys Rev Lett 2020; 124(8): 083605. DOI:  10.1103/PhysRevLett.124.083605.
 
- Hiekkamaki  M, Prabhakar S, Fickler R. Near-perfect measuring of full-field  transverse-spatial modes of light. Opt Express 2019; 27(22): 31456-31464. DOI:  10.1364/OE.27.031456.
 
- Li S, Li X, Zhang L, Wang G, Zhang L, Liu M, Zeng C, Wang L, Sun Q, Zhao  W, Zhang W. Efficient optical angular momentum manipulation for compact  multiplexing and demultiplexing using a dielectric metasurface. Adv Opt Mater  2020; 8(8): 1901666. DOI: 10.1002/adom.201901666.
 
- Pryamikov  A, Alagashev G, Falkovich G, Turitsyn S. Light transport and vortex-suppoted  wave-guiding in micro-structured optical fibers. Sci Rep 2020; 10: 2507. DOI:  10.1038/s41598-020-59508-z.
 
- Dai  K, Li W, Morgan KS, Li Y, Miller JK, Watkins RJ, Johnson EG. Second-harmonic  generation of asymmetric Bessel-Gaussian beams carrying orbital angular momentum.  Opt Express 2020; 28: 2536-2546. DOI: 10.1364/OE.381679.
 
- Dimitrov  N, Zhekova M, Paulus GG, Dreischuh A. Inverted field interferometer for measuring  the topological charges of optical vortices carried by short pulses. Opt Commun  2020; 456: 124530. DOI: 10.1016/j.optcom.2019.124530.
 
- Watkins  RJ, Dai K, White G, Li W, Miller JK, Morgan KS, Johnson EG. Experimental  probing of turbulence using a continuous spectrum of asymmetric OAM beams. Opt  Express 2020; 28(2): 924-935. DOI: 10.1364/OE.380405.
 
- Berry  MV. Optical vortices evolving from  helicoidal integer and fractional phase steps. J Opt A: Pure Appl Opt  2004; 6(2): 259-268. DOI:  10.1088/1464-4258/6/2/018.
 
- Allen  L, Beijersbergen M, Spreeuw R, Woerdman J. Orbital angular momentum of light  and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 1992; 45(11): 8185. DOI:  10.1103/PhysRevA.45.8185.
 
- Kotlyar  VV, Kovalev AA, Pofirev AP. Astigmatic transforms of an optical vortex for  measurement of its topological charge. Appl Opt 2017; 56(14): 4095-4104. DOI:  10.1364/AO.56.004095.
 
- Hickmann  JM, Fonseca EJS, Soares WC, Chavez-Cerda S. Unveiling a truncated optical  lattice associated with a triangular aperture using lights orbital angular  momentum. Phys Rev Lett 2010; 105: 053904. DOI: 10.1103/PhysRevLett.105.053904.
 
- Alperin  SN, Niederriter RD, Gopinath JT, Siemens ME. Quantitative measurement of the  orbital angular momentum of light with a single, stationary lens. Opt Lett  2016; 41(21): 5019-5022. DOI: 10.1364/OL.41.005019.
 
- Kotlyar VV, Kovalev AA, Porfirev AP. Calculation of  fractional orbital angular momentum of superpositions of optical vortices by  intensity moments. Opt Express 2019; 27(8): 11236-11251. DOI: 10.1364/OE.27.011236.
 
- Kotlyar  VV, Khonina SN, Soifer VA. Light field decomposition in angular harmonics by  means of diffractive optics. J Mod Opt 1998; 45(7): 1495-1506. DOI: 10.1080/09500349808230644.
 
- Volyar  AV, Bretsko MV, Akimova YaE, Egorov YuA. Beyond the light intensity or  intensity moments and measurements of the vortex spectrum in complex light  beams. Computer Optics 2018; 42(5): 736-743. DOI: 10.18287/2412-6179-2017-42-5-736-743.
 
- Volyar  AV, Bretsko MV, Akimova YaE, Egorov YuA, Milyukov VV. Sectorial perturbation of  vortex beams: Shannon entropy, orbital angular  momentum and topological charge. Computer Optics 2019; 43(5): 723-734. DOI: 10.18287/2412-6179-2019-43-5-723-734.
 
- Siegman AE. Lasers. Sausalito, CA:  University Science Books; 1986. 
 
- Gori F, Guattary G, Padovani C.  Bessel-Gauss beams. Opt Commun 1987; 64(6): 491-495. DOI:  10.1016/0030-4018(87)90276-8. 
 
- Soskin  MS, Gorshkov VN, Vastnetsov MV, Malos JT, Heckenberg NR. Topological charge and  angular momentum of light beams carring optical vortex.  Phys Rev A 1997; 56(5): 4064-4075. DOI: 10.1103/PhysRevA.56.4064. 
 
- Kovalev  AA, Kotlyar VV, Porfirev AP. Asymmetric Laguerre-Gaussian beams. Phys Rev A  2016; 93(6): 063858. DOI: 10.1103/PhysRevA.93.063858.
 
- Kotlyar  VV, Kovalev AA, Skidanov RV, Soifer VA. Asymmetric Bessel-Gauss beams. J Opt  Soc Am A 2014; 31(9): 1977-1983. DOI: 10.1364/JOSAA.31.001977.
 
- Kotlyar VV, Kovalev AA, Abramochkin EG. Kummer laser beams with a transverse  complex shift. J Opt 2020; 22(1): 015606. DOI:  10.1088/2040-8986/ab5ef1.
 
- Kotlyar  VV, Kovalev AA. Hermite-Gaussian modal laser beams with orbital angular  momentum. J Opt Soc Am A 2014; 31(2): 274-282. DOI: 10.1364/JOSAA.31.000274.
 
- Kotlyar  VV, Kovalev AA, Porfirev AP. Vortex Hermite-Gaussian laser beams. Opt Lett  2015; 40(5): 701-704. DOI: 10.1364/OL.40.000701.
 
- Kotlyar  VV, Kovalev AA, Volyar AV. Topological charge of a linear combination of  optical vortices: topological competition. Opt Express 2020; 28(6): 8266-8281.  DOI: 10.1364/OE.386401.
 
- Volostnikov  VG, Abramochkin EG. The modern optics of the Gaussian beams [In Russian]. Moscow: “Fizmatlit”  Publisher; 2010. ISBN: 978-5-9221-1216-1. 
- Gradshteyn IS, Ryzhik IM. Table of integrals,  series, and products. New York:  Academic; 1965.
 
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20