(44-4) 09 * << * >> * Russian * English * Content * All Issues
  
Rotation of an elliptical dielectric particle in the focus of a circularly polarized Gaussian beam
  A.G. Nalimov 1,2, S.S. Stafeev 1,2
 1 IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS, Molodogvardeyskaya 151, 443001, Samara, Russia,
 
    2 Samara National Research University, Moskovskoye Shosse 34,  443086, Samara, Russia
 
 PDF, 2208 kB
  PDF, 2208 kB
DOI: 10.18287/2412-6179-CO-693
Pages: 561-567.
Full text of article: Russian language.
 
Abstract:
A force and a torque  exerted on an elliptical dielectric particle in the focus of a spherical circularly  polarized laser beam are considered. The numerical simulation is conducted  using a diffraction field obtained by an FDTD method, with the force and torque  derived using a Maxwell’s stress tensor. It is shown that an optical torque is  exerted on the center of an elliptical particle put in the focus of a  circularly polarized spherical wave, making it rotate around the optical axis.  The rotation occurs when the elliptical microparticle is situated in a  transverse plane to the optical axis. When shifting the ellipsoid from the  optical axis, an optical trapping force appears that prevents its displacement,  meaning that the particle finds itself in an optical trap on the optical axis.
Keywords:
light force, optical  torque, optical tweezers, Maxwell’s stress tensor, rotation.
Citation:
  Nalimov AG, Stafeev SS. Rotation of an  elliptical dielectric particle in the focus of a circularly polarized Gaussian  beam. Computer Optics 2020; 44(4): 561-567. DOI: 10.18287/2412-6179-CO-693.
Acknowledgements:
  The work was partly  funded by the Russian Science Foundation (section “Theoretical background”), #  18-19-00595 (section “A torque in a non-vortex beam”), the Russian Foundation for Basic Research grant #  18-29-20003 (section “A force and torque in vortex beam”) and the RF Ministry  of Science and Higher Education within a state contract with the FSRC “Crystallography  and Photonics” RAS under agreement 007-ГЗ/Ч3363/26  (sections “Introduction” and “Conclusion”).
References:
- Sraj I, Szatmary AC, Marr DWM, Eggleton CD. Dynamic  ray tracing for modeling optical cell manipulation. Opt Express 2010; 18:  16702-16714.
 
- Zhong M, Xue G, Zhou J, Wang Z, Li Y. Measurement  of interaction force between RGD-peptide and Hela cell surface by optical  tweezers. Chin Opt Lett 2012; 10(10): 101701.
 
- Zhou  JH, Zhong MC, Wang ZQ, Li YM. Calculation of optical forces on an ellipsoid  using vectorial ray tracing method. Opt Express 2012; 20: 14928-14937.
 
- Liu  S, Li Z, Weng Z, Li Y, Shui L, Jiao Z, Chen Y, Luo A, Xing X, He S. Miniaturized  optical fiber tweezers for cell separation by optical force. Opt Lett 2019; 44:  1868-1871.
 
- Drobczyński  S, Duś-szachniewicz K. Real-time force measurement in double wavelength optical  tweezers. J Opt Soc Am B 2017; 34: 38-43.
 
- Yu  Y, Zhang Z, Li Z, Wang X. Methods of calibration to optical trapping force upon  non-spherical cells. Chin Opt Lett 2006; 4: 722-724.
 
- Muradoglu  M, Chiu WSY, Ng TW. Optical force lateral push–pulling using focus positioning.  J Opt Soc Am B 2012; 29: 874-880.
 
- Wang  D, Wang Z. Optical pulling force in periodic backward-wave waveguides. Conference  on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of  America) 2017: FTh1H.4.
 
- Jing  P, Liu Y, Keeler EG, Cruz NM, Freedman BS, Lin LY. Optical tweezers system for  live stem cell organization at the single-cell level. Biomed Opt Express 2018;  9: 771-779.
 
- Mitri  FG. Radiation force and torque on an elliptical cylinder illuminated by a  TE-polarized non-paraxial focused Gaussian light sheet with arbitrary  incidence. J Opt Soc Am A 2020; 37: 265-275.
 
- Spyratou  E, Makropoulou M, Serafetinides AA. Red blood cell micromanipulation with  elliptical laser beam profile optical tweezers in different osmolarity  conditions. Proc SPIE 2011; 8092: 80920T.
 
- Funk M,  Parkin SJ, Stilgoe AB, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H. Constant  power optical tweezers with controllable torque. Opt Lett 2009; 34: 139-141.
 
- Zhang Y,  Xue Y, Zhu Z, Rui G, Cui Y, Gu B. Theoretical investigation on asymmetrical  spinning and orbiting motions of particles in a tightly focused power-exponent  azimuthal-variant vector field. Opt Express 2018; 26: 4318-4329. DOI:  10.1364/OE.26.004318.
 
- Landau LD,  Lifshitz EM. The classic theory of fields [In Russian]. Moscow: "Nauka"  Publisher; 1973. ISBN: 5-02-014420-7.
 
- Harada Y,  Asakura T. Radiation forces on a dielectric sphere in the Rayleigh scattering  regime. Opt Commun 1996; 124: 529-541.
 
- Bekshaev  AY. Subwavelength particles in an inhomogeneous light field: optical forces  associated with the spin and orbital energy flows. J Opt 2013; 15: 044004.
 
- Kotlyar VV, Nalimov AG. Analytical expression  for radiation forces on a dielectric cylinder illuminated by a cylindrical  Gaussian beam. Opt Express 2006; 14(13): 6316-6321. DOI:  10.1364/OE.14.006316.
 
- Chang S,  Lee SS. Optical torque exerted on a homogeneous sphere levitated in the  circularly polarized fundamental-mode laser beam. J Opt Soc Am B 1985; 2:  1853-1860.
 
- Bezryadina  A, Lamstein J, Preece D, Chen JC, Chen Z. Tug-of-war optical tweezers to  control cell clusters. Optics in the Life Sciences Congress, OSA Technical  Digest (online) (Optical Society of America) 2017: OtM4E.5.
 
- Rykov MA,  Skidanov RV. Modifying the laser beam intensity distribution for obtaining  improved strength characteristics of an optical trap. Appl Opt 2014; 53(2): 156-164.  DOI: 10.1364/AO.53.000156.
 
- Wei MT,  Yang KT, Karmenyan A, Chiou A. Three-dimensional optical force field on a  Chinese hamster ovary cell in a fiber-optical dual-beam trap. Opt Express 2006;  14: 3056-3064.
 
- Fontes A, Fernandes HP, Thomaz AA, Barbosa LC,  Barjas-Castro ML, Cesar CL. Studying red blood cell agglutination by measuring  electrical and mechanical properties with a double optical tweezers. Proc SPIE  2007; 6633: 6633_26.
 
- Zhao R,  Tassin P, Koschny T, Soukoulis CM. Optical forces in nanowire pairs and  metamaterials. Opt Express 2010; 18: 25665-25676.
 
- Pedaci F, Huang Z, Oene M, Dekker NH. Calibration  of the optical torque wrench. Opt Express 2012; 20: 3787-3802.
 
- Li M, Yan  S, Yao B, Lei M, Yang Y, Min J, Dan D. Intrinsic optical torque of cylindrical  vector beams on Rayleigh absorptive spherical particles. J Opt Soc Am A 2014;  31: 1710-1715.
 
- Li M, Yan  S, Yao B, Liang Y, Han G, Zhang P. Optical trapping force and torque on  spheroidal Rayleigh particles with arbitrary spatial orientations. J Opt Soc Am  A 2016; 33: 1341-1347. DOI: 10.1364/JOSAA.33.001341.
 
- Liu J,  Zhang C, Zong Y, Guo H, Li ZY. Ray-optics model for optical force and torque on  a spherical metal-coated Janus microparticle. Photon Res 2015; 3: 265-274.
 
- Biener G,  Vrotsos E, Sugaya K, Dogariu A. Optical torques guiding cell motility. Opt  Express 2009; 17: 9724-9732.
 
- Nieto-Vesperinas  M. Optical torque on small bi-isotropic particles. Opt Lett 2015; 40:  3021-3024.
 
- Rockstuhl  C, Herzig HP. Calculation of the torque on dielectric elliptical cylinders. J Opt  Soc Am A 2005; 22(1): 109-116. DOI: 10.1364/josaa.22.000109.
 
- Nalimov AG, Kotlyar VV. Calculation of the moment  of the force acting by a cylindrical Gaussian beam on a cylindrical  microparticle. Computer Optics 2007;  31(2): 16-20.
 
- Kotlyar VV, Nalimov AG. Calculating the pressure force of the  non-paraxial cylindrical Gaussian beam exerted upon a homogeneous  circular-shaped cylinder. J Mod Opt 2006; 53(13): 1829-1844. DOI:  10.1080/09500340600653188. 
- Kotlyar VV, Nalimov AG, Kovalev AA, Porfirev AP, Stafeev SS. Transfering  of spin angular momentum to a dielectric particle. Computer Optics 2020; 44(3):  333-342. DOI: 10.18287/2412-6179-CO-686.
 
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20