(44-5) 21 * << * >> * Russian * English * Content * All Issues
  
Optimization of parameters of binary phase axicons for the generation of terahertz vortex surface plasmon polaritons on cylindrical conductors
  B.A. Knyazev 1,2, V.S. Pavelyev 1,3,4
    1 Novosibirsk State University, 630090, Russia, Novosibirsk Region, Novosibirsk, Pirogovа St., 1,
    2 Budker Institute of Nuclear Physics, 630090, Russia, Novosibirsk Region, Novosibirsk, Lavrentiev Ave, 11,
    3 IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
    443001, Samara, Russia, Molodogvardeyskaya 151,
    4 Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34
  PDF, 790 kB
DOI: 10.18287/2412-6179-CO-726
Pages: 852-856.
Full text of article: Russian language.
 
Abstract:
The feasibility of  generating surface plasmon polaritons carrying orbital angular momentum  ("vortex plasmons") on cylindrical conductors by an end-fire coupling  technique in the spectral range from 8.5 to 141 μm (~ 2-40 THz) is considered.  The front face of the cylinder is illuminated by Bessel beams formed using  binary spiral phase axicons, or annual vortex beams formed in the focal plane  of an additional lens. Graphs are constructed that reveal the relationship  between the waveguide parameters (conductor diameter, which is equal to the  diameter of the illuminating beam, and the “twist” angle of the plasmon) and  the axicon parameters (the ratio of the axicon period to the radiation  wavelength) for the above wavelengths and topological charges of the beams  ranging from 1 to 9. The results obtained indicate the possibility of  conducting experiments in the long-wavelength range for modeling a plasmon  multiplex communication channel.
Keywords:
surface plasmon-polariton, binary phase axicon, vortex beams.
Citation:
  Knyazev BA, Pavelyev VS.  Optimization of parameters of binary phase axicons for  the generation of terahertz vortex surface plasmons on cylindrical conductors.  Computer Optics 2020; 44(5): 852-856. DOI: 10.18287/2412-6179-CO-726.
Acknowledgements:
  This work was supported  by a grant from the Russian Science Foundation 19-12-00103. In the  calculations, results of the experiments performed using the infrastructure of  the Shared research facility "Siberian Synchrotron and Terahertz Radiation  Center (SSTRC)" based on "NovoFEL" of BINP SB RAS were employed.
References:
- Willner AE, Huang H, Yan  Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J. Optical communications  using orbital angular momentum beams. Adv Opt Photonics 2015; 7(1): 66-106.
   
  - Almazov AA, Khonina SN,  Kotlyar VV. Using phase diffraction optical elements to shape and select laser  beams consisting of a superposition of an arbitrary number of angular  harmonics. J Opt Technol 2005; 72(5): 391-399.
   
  - Krenn  M, Fickler R, Fink M, Handsteiner J, Malik M, Scheidl T, Ursin R, Zeilinger A.  Communication with spatially modulated light through turbulent air across  Vienna. New J Phys 2014; 16(11): 113028.
     
  - Tamburini  F, Mari E, Sponselli A, Thidé B, Bianchini A, Romanato F. Encoding many  channels on the same frequency through radio vorticity: first experimental  test. New J Phys 2012; 14(3): 033001.
     
  - Yan  Y, Xie G, Lavery MP, Huang H, Ahmed N, Bao C, Ren Y, Cao Y, Li L, Zhao Z,  Molisch AF. High-capacity millimetre-wave communications with orbital angular  momentum multiplexing. Nat Commun 2014; 5(1): 4876.
     
  - Porfirev  AP, Kirilenko MS, Khonina SN, Skidanov RV, Soifer VA. Study of propagation of  vortex beams in aerosol optical medium. Appl Opt 2017; 56(11): E8-E15.
     
  - Khonina  SN, Karpeev SV, Paranin VD. A technique for simultaneous detection of  individual vortex states of Laguerre–Gaussian beams transmitted through an  aqueous suspension of microparticles. Opt Lasers Eng 2018; 105: 68-74.
     
  - Karpeev  SV, Podlipnov VV, Ivliev NA, Paranin VD. Transmission and detection of  informationally loaded beams of wavelength 1530 nm in a random fluctuating  medium. Computer Optics 2019; 43(3): 368-375. DOI:  10.18287/2412-6179-2019-43-3-368-375.
     
  - Knyazev  BA, Serbo VG. Beams of photons with nonzero orbital angular momentum  projection: new results. Physics-Uspekhi 2018; 61(5): 449-479.
     
  - Golub MA, Karpeev SV, Kazanskiy NL, Mirzov AV, Sisakyan IN, Soĭfer VA,  Uvarov GV. Spatial phase filters matched to transverse modes. Sov J Quantum  Electron 1988; 18(3): 392-393. DOI:  10.1070/QE1988v018n03ABEH011528.
     
  - Duparre  MR, Pavelyev VS, Luedge B, Kley EB, Soifer VA, Kowarschik RM. Generation,  superposition, and separation of Gauss-Hermite modes by means of DOEs. Proc  SPIE 1998; 3291: 104-114.
     
  - Zhang  X, Xu Q, Xia L, Li Y, Gu J, Tian Z, Ouyang C, Han J, Zhang W. Terahertz surface  plasmonic waves: a review. Advanced Photonics 2020; 2(1): 014001.
     
  - Gerasimov  VV, Knyazev BA, Kotelnikov IA, Nikitin   AK, Cherkassky VS, Kulipanov GN,  Zhizhin GN. Surface plasmon polaritons launched using a terahertz free-electron  laser: propagation along a gold–ZnS–air interface and decoupling to free waves  at the surface edge. J Opt Soc Am B 2013; 30(8): 2182-2190. 
     
  - Wang  K, Mittleman DM. Metal wires for terahertz wave guiding. Nature 2004; 432(7015): 376-379. 
     
  - Knyazev  BA, Kameshkov OE, Nikitin AK, Pavelyev VS, Choporova YuYu. Feasibility  of generating surface plasmon polaritons with a given orbital momentum on cylindrical  waveguides using diffractive optical elements. Computer Optics 2019; 43(6):  992-1000. DOI: 10.18287/2412-6179-2019-43-6-992-1000.
     
  - Fisher C, Botten LC, Poulton CG,  McPhedran RC, de Sterke CM. End-fire coupling efficiencies of surface plasmons  for silver, gold, and plasmonic nitride compounds. J Opt Soc Am B 2016; 33(6):  1044-1054. 
     
  - Ustinov AV, Porfir’ev AP, Khonina SN. Effect of the fill  factor of an annular diffraction grating on the energy distribution in the  focal plane. J Opt Technol 2017; 84(9): 580-587.
     
  - Khonina SN, Porfirev AP, Ustinov AV. Diffractive  axicon with tunable fill factor for focal ring splitting. Proc SPIE 2017;  10233: 102331P. DOI:  10.1117/12.2265017. 
     
  - Khonina SN, Porfirev AP. 3D transformations of light  fields in the focal region implemented by diffractive axicons. Applied Physics  B 2018; 124(9): 191.
     
  - Choporova YuYu, Knyazev BA, Kulipanov GN, Pavelyev VS,  Scheglov MA, Vinokurov NA, Volodkin BO, Zhabin VN. High-power Bessel beams with  orbital angular momentum in the terahertz range. Phys Rev A 2017; 96(2):  023846.
     
  - Knyazev  BA, Azarov IA, Chesnokov EN, et al. Recent experiments at NovoFEL user  stations. EPJ Web of Conferences 2018; 195: 00002. DOI:  10.1051/epjconf/201819500002.
     
  - Berry  MV, McDonald KT. Exact and geometrical optics energy trajectories in twisted  beams. J Opt A: Pure Appl Opt 2008; 10(3): 035005.
     
  - TYDEX. THz Waveplates [In Russian].  Source: <http://www.Tydexoptics.com/ru/products/thz_optics/thz_waveplate1/>. 
     
  - Ostrovsky  AS, Rickenstorff-Parrao C, Arrizón V. Generation of the “perfect” optical  vortex using a liquid-crystal spatial light modulator. Opt Lett 2013; 38(4):  534-536.
     
  - Lösch F, Emde F, Jahnke E. Tables of  higher functions. Teubner; 1960. 
     
  - Kozawa  Y, Sato S. Focusing property of a double-ring-shaped radially polarized beam.  Opt Lett 2006; 31(6): 820-822.
     
  - Karpeev  SV, Paranin VD, Khonina SN. Generation of a controlled double-ring-shaped  radially polarized spiral laser beam using a combination of a binary axicon  with an interference polarizer. J Opt 2017; 19(5): 055701.
     
  - Schröter  U, Dereux A. Surface plasmon polaritons on metal cylinders with dielectric  core. Phys Rev B 2001; 64(12): 125420. 
 
  - Kotelnikov IA, Kameshkov OE, Knyazev BA.  Diffraction of Bessel beams on 2D amplitude gratings—a new branch in the Talbot  effect study. J Opt 2020; 22(6): 065603.
   
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20