(44-6) 07 * << * >> * Russian * English * Content * All Issues

The photonic nanojets formation by two-dimensional microprisms
V.D. Zaitsev 1,2, S.S. Stafeev 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1208 kB

DOI: 10.18287/2412-6179-CO-746

Pages: 909-916.

Full text of article: Russian language.

Abstract:
Using the finite difference method implemented in the COMSOL Multiphysics software package, the focusing of laser radiation by dielectric prisms with a triangular profile was numerically investigated. It was shown that two-dimensional triangular prisms make it possible to focus light in free space into spots with dimensions smaller than the scalar diffraction limit. In particular, a silica glass prism with a base width of 60 μm and a height of 28.5 μm forms a photonic nanojet with a maximum intensity of 6 times the intensity of the incident radiation and a width of FWHM=0.38λ. A prism from barium titanate with a base width of 60 μm and a height of 20 μm allows to obtain a photonic nanojet with the same width (0.38λ) and a maximum intensity 5 times the intensity of the incident radiation. The size of the focal spot can be reduced further if the height of the prism is selected so that the maximum intensity is located inside the material of the prism. For example, a barium titanate prism with a height of 21 μm and a base width of 60 μm forms a focal spot with a width of FWHM=0.25λ.

Keywords:
photonic nanojet, subwavelength focusing, finite element method, dielectric microprism.

Citation:
Zaitsev VD, Stafeev SS. The photonic nanojets formation by two-dimensional microprisms. Computer Optics 2020; 44(6): 909-916. DOI: 10.18287/2412-6179-CO-746.

Acknowledgements:
This work was supported by the Russian Foundation for Basic Research (project No. 18-07-01122 in part of «Focusing by a triangular silica prism», project No. 18-07-01380 in part of «Focusing by a cylinder» and project No. 18-29-20003 in part of «Influence of the refractive index on the parameters of the focal spot»), Ministry of Science and Higher Education within the State assignment FSRC «Crystallography and Photonics» RAS in part of «Introduction».

References:

  1. Geints YuE, Zemlyanov AA. Modeling spatially localized photonic nanojets from phase diffraction gratings. J Appl Phys 2016; 119: 15391. DOI: 10.1063/1.4946846.
  2. Mahariq I, Astratov VN, Kurt H. Persistence of photonic nanojet formation under the deformation of circular boundary. J Opt Soc Am B 2016; 33: 535-542. DOI: 10.1364/JOSAB.33.000535.
  3. Zhao Z, Pu M, Gao H, Jin J, Li X, Ma X, Wang Y, Gao P,  Luo X. Multispectral optical metasurfaces enabled by achromatic phase transition. Sci Rep 2015; 5: 15781. DOI: 10.1038/srep15781.
  4. Kozlova ES, Kotlyar VV, Degtyarev SA. Modeling the resonance focusing of a picosecond laser pulse using a dielectric microcylinder. J Opt Soc Am B 2015; 32(11): 2352-2357. DOI: 10.1364/JOSAB.32.002352.
  5. Wei P-K, Chang W-L, Lee K-L, Lin E-H. Focusing subwavelength light by using nanoholes in a transparent thin film. Opt Lett 2009; 34(12): 1867-1869.
  6. Khonina SN, Savelyev DA, Kazanskiy NL. Analysis of polarisation states at sharp focusing. Optik 2016; 127(6): 3372-3378. DOI: 10.1016/j.ijleo.2015.12.108.
  7. Li X, Cao Y, Tian N, Fu L, Gu M. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate. Optica 2015; 2: 567-570. DOI: 10.1364/OPTICA.2.000567.
  8. Yi KJ, Wang H, Lu YF, Yang ZY. Enhanced Raman scattering by self-assembled silica spherical microparticles. J Appl Phys 2007; 91: 063528. DOI: 10.1063/1.2450671.
  9. Bhuyan MK, Velpula P K, Colombier JP, Olivier T, Faure N, Stoian R. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams. Appl Phys Lett 2014; 94: 02197. DOI: 10.1063/1.4861899.
  10. Li Y-C, Xin H-B, Lei H-X, Liu L-L, Li Y-Z, Zhang Y, Li B-J. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light Sci Appl 2016; 5: e16176. DOI: 10.1063/1.2450671.
  11. McLeod E, Arnold CB. Subwavelength direct-write nanopatterning using optically trapped microspheres. Nature Nano 2008; 3: 413-417. DOI: 10.1038/nnano.2008.150.
  12. Chang W-L, Chang Y-J, Wei P-K, Tsao PH. Fabricating subwavelength array structures using a near-field photolithographic method. Appl Phys Lett 2006; 88(10): 101109.
  13. Zhang B, Hao J, Shen Z, Wu H, Zhu K, Xu J, Ding J. Ultralong photonic nanojet formed by dielectric microtoroid structure. Appl Opt 2018; 57(28): 8331-8337. DOI: 10.1364/AO.57.008331.
  14. Liu Y, Liu X, Li L, Chen W, Chen Y, Huang Y, Xie Z. Characteristics of photonic nanojets from two-layer dielectric hemisphere. Chin Phys B 2017; 26(11): 11420. DOI: 10.1088/1674-1056/26/11/114201.
  15. Geints YE, Zemlyanov AA. Photonic nanojet super-resolution in immersed ordered assembly of dielectric microspheres. J Quant Spectrosc Radiat Transf 2017; 200: 32-37. DOI: 10.1016/j.jqsrt.2017.06.001.
  16. Darafsheh A, Bollinger D. Systematic study of the characteristics of the photonic nanojets formed by dielectric microcylinders. Opt Commun 2017; 402: 270-275. DOI: 10.1016/j.optcom.2017.06.004.
  17. Geints YE, Panina EK, Zemlyanov AA. Comparative analysis of key parameters of "photonic nanojets" from axisymmetric nonspherical microparticles. Proc SPIE 2018; 10833: 1083312. DOI: 10.1007/s11082-017-0958-y.
  18. Chen Z, Taflove A, Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt Express 2004; 12: 1214-1220. DOI: 10.1364/OPEX.12.001214.
  19. Li X, Chen Z, Taflove A, Backman V. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets. Opt Express 2005; 13: 526-533. DOI: 10.1364/OPEX.13.000526.
  20. Huang Y, Zhen Z, Shen Y, Min C, Veronis G. Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm. Opt Express 2019; 27(2): 1310-1325. DOI: 10.1364/OE.27.001310.
  21. Zhou S, Deng Y, Zhou W, Yu M, Urbach HP, Wu Y. Effects of whispering gallery mode in microsphere super-resolution imaging. Appl Phys B 2017; 123: 236. DOI: 10.1007/s00340-017-6815-7.
  22. Luk’yanchuk B, Paniagua-Domínguez R, Minin I, Minin O, Wang Z. Refractive index less than two: photonic nanojets yesterday, today and tomorrow. Opt Mater Express 2017; 7(6): 1820-1847. DOI: 10.1364/OME.7.001820.
  23. Xing H, Zhou W, Wu Y. Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder. Opt Lett 2018; 43(17): 4292-4295. DOI: 10.1364/OL.43.004292.
  24. Abolmaali F, Brettin A, Green A, Limberopoulos NI, Urbas AM, Astratov VN. Photonic jets for highly efficient mid-IR focal plane arrays with large angle of view. Opt Express 2017; 25(25): 31174-31185. DOI: 10.1364/OE.25.031174.
  25. Kotlyar VV, Stafeev SS. Modeling the sharp focus of a radially polarized laser mode using a conical and a binary microaxicon. J Opt Soc Am B 2010; 27(10): 1991-1997. DOI: 10.1364/JOSAB.27.001991.
  26. Geints YE, Zemlyanov AA, Panina EK. Microaxicon-generated photonic nanojets. J Opt Soc Am B 2015; 32(8): 1570-1574.
  27. Khonina S, Degtyarev S, Savelyev D, Ustinov A. Focused, evanescent, hollow, and collimated beams formed by microaxicons with different conical angles. Opt Express 2017; 25(16): 19052-19064. DOI: 10.1364/OE.25.019052.
  28. Khonina SN, Ustinov AV, Degtyarev SA. Calculation of diffraction of laser radiation by a two-dimensional (cylindrical) axicon with the high numerical aperture in various models. Computer Optics 2014; 38(4): 670-680.
  29. Khonina SN, Savelyev DA. High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam. JETP 2013; 117(4): 623-630. DOI: 10.1134/S1063776113120157.
  30. Khonina SN, Karpeev SV, Alferov SV, Savelyev DA, Laukkanen J, Turunen J. Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams. J Opt 2013; 15(8): 085704. DOI: 10.1088/2040-8978/15/8/085704.
  31. Degtyarev SA, Porfirev AP, Khonina SN. Photonic nanohelix generated by a binary spiral axicon. Appl Opt 2016; 55(12): B44-B48. DOI: 10.1364/AO.55.000B44.
  32. Kotlyar VV, Stafeev SS, Feldman A. Photonic nanojets generated using square-profile microsteps. Appl Opt 2014; 53(24): 5322-5329. DOI: 10.1364/AO.53.005322.
  33. Nayak C, Saha A. Effect of the matrix dimension on the performance ofphotonic nanojets produce from an array of cubiod profilemicrosteps. Optik 2016; 127: 10766-10771.
  34. Savelyev DA, Khonina SN. Influence of subwave details of microrelief on the diffraction pattern of gaussian beams. Vestnik of Samara University 2014; 43(1): 275-286. DOI: 10.18287/1998-6629-2014-0-1(43)-275-286.
  35. Ang AS, Karabchevsky A, Minin IV, Minin OV, Sukhov SV, Shalin AS. ‘Photonic Hook’ based optomechanical nanoparticle manipulator. Sci Rep 2018; 8: 2029.
  36. Khonina SN, Savelyev DA, Ustinov AV. Diffraction of laser beam on a two-zone cylindrical microelement. Computer Optics 2013; 37(2): 160-169.
  37. Minin IV, Minin OV, Geints YE. Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: brief review. Annalen der Physik 2015; 527(7-8): 491-497.
  38. Liu C-Y, Yen T-P, Minin OV, Minin IV. Engineering photonic nanojet by a graded-index micro-cuboid. Physica E Low Dimens Syst Nanostruct 2018; 98: 105-110. DOI: 10.1016/j.physe.2017.12.020.
  39. Nikolsky VV, Nikolskaya TI. Electrodynamics and radio wave propagation [In Russian]. Moscow: “Nauka” Publisher; 1989.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20