(45-3) 02 * << * >> * Russian * English * Content * All Issues

Transformation of a high-order edge dislocation to optical vortices (spiral dislocations)
V.V. Kotlyar 1,2, A.A. Kovalev 1,2, A.G. Nalimov 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1033 kB

DOI: 10.18287/2412-6179-CO-855

Pages: 319-323.

Full text of article: Russian language.

We theoretically show that an astigmatic transformation of an nth-order edge dislocation (a zero-intensity straight line) produces n optical elliptical vortices (spiral dislocations) with unit topological charge at the double focal distance from the cylindrical lens, located on a straight line perpendicular to the edge dislocation, at points whose coordinates are the roots of an nth-order Hermite polynomial. The orbital angular momentum of the edge dislocation is proportional to the order n.

astigmatic transformation, edge dislocation, spiral dislocation, optical vortex.

Kotlyar VV, Kovalev AA, Nalimov AG. Transformation of a high-order edge dislocation to optical vortices (spiral dislocations). Computer Optics 2021; 45(3): 319-323. DOI: 10.18287/2412-6179-CO-855.

The work was partly funded by the Russian Foundation for Basic Research under grant # 18-29-20003 (Section "Complex amplitude of field with edge dislocation on double focal distance"), the Russian Science Foundation under grant # 18-19-00595 (Section "Orbital angular momentum"), and by the RF Ministry of Science and Higher Education within a state contract with the "Crystallography and Photonics" Research Center of the RAS (Section "Numerical simulation").


  1. Abramochkin EG, Volostnikov VG. Beam transformation and nontransformed beams. Opt Commun 1991; 83(1-2): 123-135. DOI: 10.1016/0030-4018(91)90534-K.
  2. Lu B, Wu P. Analytical propagation equation of astigmatic Hermite-Gaussian beams through a 4x4 paraxial optical systems and their symmetrizing transformation. Opt Laser Technol 2003; 35: 497-504.
  3. Chen YF, Chay CC, Lee CY, Tung JC, Liang HC, Huang KT. Characterizing the propagation evolution of wave patterns and vortex structures in astigmatic transformations of Hermite-Gaussian beams. Laser Phys 2017; 28: 015002.
  4. Abramochkin EG, Razueva EU, Volostnikov VG. Hermite-Laguerre-Gaussian beams in astigmatic optical systems. Proc SPIE 2008; 7009: 70090M. DOI: 10.1117/12.793382.
  5. Bekshaev AY, Soskin MS, Vasnetsov MV. Transformation of higher-order optical vortices upon focusing by an astigmatic lens. Opt Commun 2004; 241: 237-247.
  6. Bekshaev AY, Karamoch AI. Astigmatic telescopic transformation of a high-order optical vortex. Opt Commun 2008; 281: 5687-5696.
  7. Zhu K, Zhu J, Su Q, Tang H. Propagation properties of an astigmatic sin-Gaussian beam in a strongly nonlocal nonlinear media. Appl Sci 2019; 9(1): 71.
  8. Huang TD, Lu TH. Large astigmatic laser cavity modes and astigmatic compensation. Appl Phys B 2018; 124: 72.
  9. Pan J, Shen Y, Wan Z, Fu X, Zhang H, Liu Q. Index-tunable structured-light beams from a laser with a intracavity astigmatic mode converter. Phys Rev Appl 2020; 14: 044048.
  10. Kotlyar VV, Kovalev AA, Porfirev AP, Kozlova ES.  Three different types of astigmatic Hermite-Gaussian beams with orbital angular momentum. J Opt 2019; 21(11): 115601. DOI: 10.1088/2040-8986/ab42b5.
  11. Kotlyar VV, Kovalev AA, Porfirev AP. Vortex astigmatic Fourier-invariant Gaussian beams. Opt Express 2019; 27(2): 657-666. DOI: 10.1364/OE.27.000657.
  12. Kotlyar VV, Kovalev AA, Porfirev AP. Elliptic Gaussian optical vortices. Phys Rev A 2017; 95(5): 053805. DOI: 10.1103/PhysRevA.95.053805.
  13. Kotlyar VV, Kovalev AA, Porfirev AP. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl Opt 2017; 56(14): 4095-4104. DOI: 10.1364/AO.56.004095.
  14. Kotlyar VV, Kovalev AA, Porfirev AP. Vortex Hermite-Gaussian laser beams. Opt Lett 2015; 40(5): 701-704. DOI: 10.1364/OL.40.000701.
  15. Bazhenov VY, Soskin MS, Vasnetsov MV. Screw dislocations in light wavefronts. J Mod Opt 1992; 39(5): 985-990.
  16. Basistiy IV, Soskin MS, Vasnetsov MV. Optical wavefront dislocations and their properties. Opt Commun 1995; 119(5-6): 604-612.
  17. Petrov DV. Vortex-edge dislocation interaction in a linear medium. Opt Commun 2001; 188: 307-312.
  18. Petrov DV. Splitting of an edge dislocation by an optical vortex. Opt Quantum Electron 2002; 34: 759-773.
  19. He D, Yan H, Lu B. Interaction of the vortex and edge dislocation embedded in a cosh-Gaussian beam. Opt Commun 2009; 282: 4035-4044.
  20. Chen H, Wang W, Gao Z, Li W. Splitting of an edge dislocation by a vortex emergent from a nonparaxial beam. J Opt Soc Am B 2019; 36: 2804-2809.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20