(45-3) 04 * << * >> * Russian * English * Content * All Issues

Numerical analysis of the functional properties of the 3D resonator of a plasmon nanolaser with regard to nonlocality and prism presence via the Discrete Sources method
Y.A. Eremin 1, V.V. Lopushenko 1

Lomonosov Moscow State University, 119991, Moscow, Russia, Leninskie Gory 1, bld 52

 PDF, 2231 kB

DOI: 10.18287/2412-6179-CO-790

Pages: 331-339.

Full text of article: Russian language.

The influence of the nonlocality effect on the optical characteristics of the near field of a plasmonic nanolaser resonator is considered. A computer model based on the Discrete Sources method has been developed for the analysis of the near-field characteristics of a layered nanoparticle located on a transparent substrate in an active medium. In this case, the nonlocality of the plasmon metal is taken into account within the framework of a Generalized Nonlocal Optical Response model. Excitation of a particle by both propagating and evanescent waves is investigated. "Optimal" directions of external excitation have been established. It is found that excitation by an evanescent wave leads to a higher intensity of the near field. It is demonstrated that accounting for the nonlocal effect in the plasmonic metal significantly reduces the field amplification factor.

plasmonic nanolaser, spaser, nonlocal effect, the discrete sources method.

Eremin YA, Lopushenko VV. Numerical analysis of the functional properties of the 3D resonator of a plasmon nanolaser with regard to nonlocality and prism presence via the Discrete Sources method. Computer Optics 2021; 45(3): 331-339. DOI: 10.18287/2412-6179-CO-790.

This work was financially supported by the Moscow Center for Fundamental and Applied Mathematics (project: "Modeling of the Plasmonic Nanolaser Elements Accounting for Quantum Nonlocality").


  1. Klimov VV. Nanoplasmonics. Singapore: Pan Stanford Publishing Pte Ltd; 2014. ISBN: 978-981-4267-16-8.
  2. Barbillon G. Plasmonics and its applications. Materials 2019; 12: 1502. DOI: 10.3390/ma12091502.
  3. Xu D, Xiong X, Wu L, et al. Quantum plasmonics: new opportunity in fundamental and applied photonics. Review. Adv Opt Photonics 2018; 10(4): 703-756. DOI: 10.1364/AOP.10.000703.
  4. Stockman M, Bozhevolnyi SI, et al. Roadmap on plasmonics. J Opt 2018; 20: 04300. DOI: 10.1088/2040-8986/aaa114.
  5. Kalambate PK, Dhanjai, Huang Z, et al. Core@shell nanomaterials based sensing devices: A review. Trends Analyt Chem 2019; 115: 147-161. DOI: 10.1016/j.trac.2019.04.002.
  6. Izadiyana Z, Shamelia K, Miyakea M, et al. Green fabrication of biologically active magnetic core-shell Fe3O4/Au nanoparticles and their potential anticancer effect. Materials Sci Eng C 2019; 96: 51-57. DOI: 10.1016/j.msec.2018.11.008.
  7. Xu L, Li F, Liu Y, Yao F, Liu S. Surface plasmon nanolaser: Principle, structure, characteristics and applications. Appl Sci 2019; 9(5): 861. DOI: 10.3390/app9050861.
  8. Solowan H-P, Kryschi C. Facile design of a plasmonic nanolaser. Condens Matt 2017; 2(1): 8. DOI: 10.3390/condmat2010008.
  9. Sudarkin AN, Demkovich PA. Excitation of surface electromagnetic wave on the boundary of a metal with an amplified medium. Sov Phys Tech Phys 1988; 34: 764.
  10. Bergman DJ, Stockman MI. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett 2003; 90: 027402. DOI: 10.1103/PhysRevLett.90.027402.
  11. Protsenko IE, Uskov AV, Zaimidoroga A, Samoilov VN, O’Reilly EP. Dipole nanolaser. Phys Rev A 2005; 71: 063812. DOI: 10.1103/PhysRevA.71.063812.
  12. Noginov MA, Zhu G, Belgrave AM, et al. Demonstration of spaser-based nanolaser. Nature 2009; 460: 1110. DOI: 10.1038/nature08318.
  13. Zabolotskii AA, Kuch’yanov AS, Benimetskii FA, Plekhanov AI. Соllective fluorescence of composite nanoparticles. J Exp Theor Phys 2018; 126: 174-182. DOI: 10.1134/S1063776118020097.
  14. Balykin VI. Plasmon nanolaser: current state and prospects. Phys Usp 2018; 61(9): 846-870. DOI: 10.3367/UFNe.2017.09.038206.
  15. Jackson JD.. Classical electrodynamics. 3rd ed. New York: John Wiley; 1999. ISBN: 0-471-30932-X.
  16. Garcia de Abajo FJ. Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J Phys Chem C 2008; 112: 17983-17987. DOI: 10.1021/jp807345h.
  17. Raza S, Bozhevolnyi SI, Wubs M, Mortensen NA. Nonlocal optical response in metallic nanostructures. Topical Review. J Phys Condens Matter 2015; 27: 183204. DOI: 10.1088/0953-8984/27/18/183204.
  18. Eremin YuA, Sveshnikov AG. Mathematical models in nanooptics and biophotonics based on the discrete sources method. Comp Math Math Phys 2007; 47(2): 262-269. DOI: 10.1134/S0965542507020108.
  19. Doicu A, Eremin Yu, Wriedt T. Acoustic and electromagnetic scattering analysis using discrete sources. San Diego: Academic Press; 2000. ISBN: 0-12-219740-2.
  20. Baryshev AV, Eremin YuA. Analyzing the scattering of light by a cluster of nanoparticles in thin metal film with discrete sources method [In Russian]. Computer Optics 2011; 35(3): 311-319.
  21. Eremin YuA, Sveshnikov AG. Mathematical model taking into account nonlocal effects of plasmonic structures on the basis of the discrete source method. Comp Math Math Phys 2018; 58(4): 572-580. DOI: 10.1134/S0965542518040103.
  22. Eremin Yu, Doicu A, Wriedt T. Discrete sources method for modeling the nonlocal optical response of a nonspherical particle dimer. J Quantitat Spectr Radiat Transfer 2018; 217: 35-44. DOI: 10.1016/j.jqsrt.2018.05.026.
  23. Eremin Yu, Doicu A, Wriedt T. A numerical method for analyzing the near field enhancement of non-spherical dielectric-core metallic-shell particles accounting for the non-local dispersion. J Opt Soc Am A 2020; 37(7): 1135-1142. DOI: 10.1364/JOSAA.392537.
  24. Eremin YuA, Sveshnikov AG. Method for analyzing the influence of the quantum nonlocal effect on the characteristics of a plasmonic nanolaser. Doklady Mathematics 2020; 101(1): 20-24. DOI: 10.1134/S1064562420010135.
  25. Born M, Wolf E. Principles of Optics. Electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press; 1999. ISBN: 0-521-64222-1.
  26. Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B 1972; 6: 4370. DOI: 10.1103/PhysRevB.6.4370.
  27. Liaw J-W, Chen H-C, Kuo M-K. Comparison of Au and Ag nanoshells' metal-enhanced fluorescence. J Quantitat Spectr Radiat Trans 2014; 146: 321-330. DOI: 10.1016/j.jqsrt.2014.02.025.
  28. Kupresak M, Zheng X, Vandenbosch GAE, Moshchalkov VV. Comparison of hydrodynamic models for the electromagnetic nonlocal response of nanoparticles. Adv Theory Simul 2018; 1(12): 1800076. DOI: 10.1002/adts.201800076.
  29. Avşar D, Ertürk H, Mengüç MP. Plasmonic responses of metallic/dielectric core-shell nanoparticles on a dielectric substrate. Mater Res Express 2019; 6: 065006. DOI: 10.1088/2053-1591/ab07fd.
  30. Tserkezis Ch, Yan W, Hsieh W, Sun G, Khurgin JB, Wubs M, Mortensen MA. On the origin of nonlocal damping in plasmonic monomers and dimers. Int J Mod Phys B 2017; 31: 1740005. DOI: 10.1142/S0217979217400057.
  31. Maack JR, Mortensen NA, Wubs M. Size-dependent nonlocal effects in plasmonic semiconductor particles. Europhysics Letters 2017; 119(1): 17003. DOI: 10.1209/0295-5075/119/17003.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20