(45-3) 11 * << * >> * Russian * English * Content * All Issues

Determining the composition of an object based on its hyperspectral image
A.V. Demin 1,2, E.N. Sechak 1,2, S.P. Prisyazhnyuk 1,3

ITMO University, 197101, Russia, St. Petersburg, Kronverkskiy prospekt, 49,
JSC "LOMO", 194044, Russia, St. Petersburg, Chugunnaya 20,
CJSC "«Institute of Telecommunications»", 194100, Russia, St. Petersburg, Kantemirovskaya 5

 PDF, 1110 kB

DOI: 10.18287/2412-6179-CO-697

Pages: 394-398.

Full text of article: Russian language.

Abstract:
The article presents results of the development and research of a hyperspectral imaging spectrometer for analyzing borehole fluids in real operating conditions in the spectral range from 0.35 microns to 2.1 microns. A mathematical model and an algorithm for identifying the borehole fluid by composition and percentage content based on the results of hyperspectral image analysis are developed.

Keywords:
computer optics, image processing, image analysis, three-dimensional image processing, spectrometer.

Citation:
Demin AV, Sechak EN, Prisyazhnyuk SP. Determining the composition of an object based on its hyperspectral image. Computer Optics 2021; 45(3): 394-398. DOI: 10.18287/2412-6179-CO-697.

Acknowledgements:
The work was carried out at the JSC "Institute of Telecommunications" within the framework of the State Program of the Russian Federation "Development of shipbuilding and technology for the development of offshore fields in 2013-2030".

References:

  1. Rodionov AI, Zubkov BV, et al. Development of multidimensional measurement methods in optical surface studies [In Russian]. Journal of Technical Physics 2002; 72(10): 37-51.
  2. Kozoderov VV, Kondranin TV, et al. Innovative technology for processing multispectral space images of the Earth’s surface [In Russian]. Issledovanie Zemli iz Kosmosa 2008; 1: 56-72.
  3. Balter BM, Egorov V.V. et al. Targeted isolation of plant communities according to the data of aerial hyperspectral imaging and the multispectral sensor of the satellite Quickbird. Issledovanie Zemli iz Kosmosa 2008; 6: 14-42.
  4. Kozoderov VV, Kondranin TV, et al. Processing and interpretation of hyperspectral aerospace measurements for remote diagnostics of natural-technogenic objects. Issledovanie Zemli iz Kosmosa 2009; 2: 36-54.
  5. Abramov BA, Laputin YuA, Skrimunt VK, Lvova LK. The space complex of optical-electronic surveillance "Resource-DK1" [In Russian]. Newsletter of the GIS Association 2001; 2(29)-3(30): 42-45.
  6. Gorelov VA, Lukashevich EL, Streltsov VA. Status and development trends of high-resolution space remote sensing spacecraft [In Russian]. Source: <http://www.gisa.ru/5062.html>.
  7. Shilin BV, Gruzdev BH, Markov AB, Mochalov VF. Use of video spectral aerial photography for environmental monitoring [In Russian]. Opticheskii Journal 2001; 68(12): 41-49.
  8. Fundamentals of formation testing. Sugar Land, Texas: Schlumberger; 2006.
  9. Soifer, VA. ed. Nanophotonics and its application in remote sensing systems [In Russian]. Samara: "Novaya Tehnika" Publisher; 2016.
  10. Vinogradov AN, Egorov VV, Kalinin AP, Melnikova EM, Rodionov AI, Rodionov ID. The set of hyperspectral sensors in the optical band [In Russian]. Moscow: "IKI RAN" Publisher; 2015.
  11. Sviridov KN. Technology for achieving high angular resolution of atmospheric vision optics [In Russian]. Moscow: "Znanie" Publisher; 2005.
  12. Avdeev SP. Analysis and synthesis of optoelectronic devices [In Russian]. Saint-Petersburg: "Tipografiya Pravda" Publisher; 2000.
  13. Overview of programs and libraries for working with hyperspectral data. Source: <https://www.spectraltechnology.ru/info/articles/obzor-programm-i-bibliotek-dlya-raboty-s-giperspektralnymi-dannymi/>.
  14. ENVI. Fields of application. Source: <https://www.envisoft.ru/use_regions.html>.
  15. Soifer VA, ed. Methods for computer design of diffractive optical elements. New York: John Willey and Sons Inc; 2002. ISBN: 978-0-471-09533-0.
  16. Hyperspectral image processing in the ENVI software package. Source: <http://www.sovzond.ru/dzz>.
  17. Soifer VA, ed. Diffraction nanophotonics [In Russian]. Moscow: "Fizmatlit" Publisher; 2011. ISBN: 978-5-9221-1237-6.
  18. Abrosimov AV, Cherepanov AS. Hyperspectral image processing in ENVI PC [In Russian]. Geoprofi 2007; 2: 55-57.
  19. Kozoderov VV, Kondranin TV, et al. Processing and interpretation of hyperspectral aerospace measurements for remote diagnostics of natural-technogenic objects [In Russian]. Issledovanie Zemli iz Kosmosa 2009; 2: 36-54.
  20. Gorbunov GG, Demin AV, Nikiforov VO, Savitskiǐ AM, Skvortsov YS, Sokol'skii MN, Tregub VP. Hyperspectral apparatus for remote probing of the Earth. J Opt Technol 2009; 76(10): 651-656.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20