(45-5) 04 * << * >> * Russian * English * Content * All Issues
  
Quality of radiation conversion under four-wave mixing on thermal nonlinearity with feedback
  A.A. Akimov 1, S.A. Guzairov 1, V.V. Ivakhnik 1
1 Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34
 PDF, 806 kB
  PDF, 806 kB
DOI: 10.18287/2412-6179-CO-888
Pages: 667-672.
Full text of article: Russian language.
 
Abstract:
Quality of radiation conversion under four-wave mixing on thermal nonlinearity with feedback for both signal and object waves has been investigated at high reflection coefficients. It has been shown that the optimal operating mode of a four-wave converter on thermal nonlinearity is the mode in which the pumping waves have equal intensities and there is a compensation for a phase shift arising from the pumping wave self-action. In this operating mode of the four-wave radiation converter, as compared with the case of the absence of feedback for both signal and object waves, a significant increase in the amplitude reflection coefficient is observed with an increase in the pumping waves intensities. In this case, despite the decrease in the bandwidth of spatial frequencies of the object wave with an increase in the pumping wave intensities, the quality of radiation conver-sion with feedback for both signal and object waves is better than in the absence of feedback.
Keywords:
four-wave radiation  converter, feedback, thermal nonlinearity.
Citation:
  Akimov AA, Guzairov SA, Ivakhnik VV. Quality of radiation conversion under four-wave mixing on thermal nonlinearity with feedback. Computer Optics 2021; 45(5): 667-672. DOI: 10.18287/2412-6179-CO-888.
References:
  - Dmitriev  VG. Nonlinear optics and wavefront reversal [In Russian]. Moscow: “Fizmatlit” Publisher; 2003. ISBN: 5-9221-0080-7.
 
- Ivakhnik VV.  Wavefront reversal and four-wave interaction [In Russian]. Samara: Samara State   University Publisher;  2010. ISBN:  978-5-86465-471-2.
 
- Ma X, Yang L, Guo X, Li X.  Generation of photon pairs in dispersion shift fibers through spontaneous  four-wave mixing: influence of self-phase modulation. Opt Commun 2011; 284(19): 4558-4562. DOI:  10.1016/j.optcom.2011.06.011.
 
- Salem R, Foster MA, Turner AC, Geraghty DF, Lipson M,  Gaeta AL. Optical time lens based on four-wave mixing on a silicon chip. Opt Lett 2008; 33(10): 1047-1049. DOI: 10.1364/OL.33.001047.
 
- Shcheulin AS, Angervaks AE, Ryskin AI. Holographic media  based on fluorite crystals with colors centers. Saint-Petersburg: ITMO University  Publisher; 2009. 
 
- Romanov OG, Ormachea O, Tolstik AL, Arce-Diego JL,  Pereda-Cubian D, Fanjul-Velez F. Formation of holographic gratings and dynamics  of four-wave mixing in nonlinear microresonators. Proc SPIE 2006; 6255: 625507. DOI: 10.1117/12.676523.
 
- Ivakhnik  VV, Petnikova VM, Shuvalov VV. Enhancement of the efficiency of wavefront  reversal systems using ring resonators. Sov J Quantum Electron 1981; 11(2): 275-276. DOI: 10.1070/QE1981v011n02ABEH005924.
 
- Ivakhnik VV. Optical radiation filtration with  nondegenerate four-photon interaction. Russ Phys J 1983; 25(8): 765-767. DOI:  10.1007/BF00895259. 
 
- Akimov AA, Guzairov SA, Ivakhnik VV. Four-wave mixing  on thermal nonlinearity in a scheme with positive feedback. Computer Optics  2018; 42(4): 534-541. DOI: 10.18287/2412-6179-2018-42-4-534-541. 
 
- Voronin ES, Ivakhnik VV, Petnikova VM, Solomatin VS,  Shuvalov VV. Compensation of phase distortions in degenerate four-frequency  interaction. Sov J Quantum Electron 1979; 9(9): 1180-1184. DOI:  10.1070/QE1979v009n09ABEH009483. 
 
- Akimov AA, Ivakhnik VV, Nikonov VI. Phase conjugation  under four-wave mixing on resonant and thermal nonlinearities at relatively  high reflection coefficients. Opt Spectrosc 2013; 115(3): 384-390. DOI: 10.1134/S0030400X13090038. 
 
- Zeldovich BY, Shkunov VV. Influence of spatial interference  on amplification in stimulated scattering of light. Sov J Quantum Electron 1977; 7(11): 1345-1349. DOI:  10.1070/QE1977v007n11ABEH004122. 
 
- Voronin ES, Petnikova VM, Shuvalov VV. Use of degenerate  parametric processes for wavefront correction (review). Sov J Quantum Electron 1981; 11(5): 551-561. DOI:  10.1070/QE1981v011n05ABEH006899. 
 
- Vorobeva  EV, Ivakhnik VV. Time response of a thin dynamic hologram in a dye solution  simulated by a four-energy-level diagram [In Russian]. Computer optics 2002; 24: 91-93.
 
- Kovalev VI, Trofimov   VA. Role of nonlinear absorption  in phase conjugation of infrared radiation under conditions of a four-wave  interaction in semiconductors. Sov J Quantum Electron 1991; 21(11): 1221-1224. DOI:  10.1070/QE1991v021n11ABEH004386. 
 
- Akimov AA, Ivakhnik VV, Nikonov VI. Four wave interaction  on thermal nonlinearity at large reflectance with allowance pumping waves  self-diffraction [In Russian]. Computer optics  2011; 35(2): 250-255.
 
- Pan X, Chen H, Wei T, Zhang J, Marino AM, Treps N,  Glasser RT, Jing J. Experimental realization of a feedback optical parametric  amplifier with four-wave mixing. Phys Rev B  2018; 97(16): 161115. DOI: 10.1103/PhysRevB.97.161115.
 
- Smetanin SN. Comparative analysis of the use of  various solid-state laser media for the self-starting of four-wave PCW  generation in a loop laser resonator. Quantum Electronics 2013; 43(1): 37-46. DOI:  10.1070/QE2013v043n01ABEH014945. 
 
- Sidorov AI. Basic photonics: physical principles and  methods of converting optical signals in photonic devices [In Russian].  Saint-Petersburg: ITMO University Publisher; 2014. 
- Pakhomov II, Rozhkov OV, Rozhdestvin VN. Optoelectronic quantum devices [In Russian]. Moscow: “Radio i Svyaz”  Publisher; 1982. 
 
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20