(45-5) 06 * << * >> * Russian * English * Content * All Issues
  
Optical image edge detection by transmissive metal-dielectric-metal structures
  D.V. Nesterenko 1,2, A.A. Morozov 1, L.L. Doskolovich 1,2
1 IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
     443001, Samara, Russia, Molodogvardeyskaya 151,
  2 Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia
 PDF, 1568 kB
  PDF, 1568 kB
DOI: 10.18287/2412-6179-CO-853
Pages: 678-684.
Full text of article: Russian language.
 
Abstract:
The feasibility of an  optical image edge detection based on metal-insulator-metal (MIM) resonance  transmission structures is experimentally investigated. The structures are  fabricated on a glass substrate and consist of thin aluminum layers separated  by a quartz layer. The excitation of Fabry-Perot modes by an incident wave  produces resonance line shapes in angular and wavelength transmission spectra.  Resonance enhancement and suppression of beams using the MIM structures can be  implemented for suppressing the illuminating beam and amplifying the field  scattered by an object. By using the MIM structure under oblique incidence, we  experimentally observe the efficient image edge detection for phase optical  elements at a set of wavelengths. The obtained images of edges of the elements  exhibit a directionality of image edge detection that depends on the direction  of inhomogeneity gradient in the object plane, as suggested by the angular  transmission spectra of the MIM structures. The results of the present work can  find applications in optical information processing and optical filtering  systems.
Keywords:
optical resonances,  planar structures, metal-dielectric multilayer, optical image edge detection.
Citation:
  Nesterenko DV, Morozov AA, Doskolovich LL. Optical image edge detection by transmissive metal-dielectric-metal structures. Computer Optics 2021; 45(5): 678-684. DOI: 10.18287/2412-6179-CO-853.
Acknowledgements:
  This  work was partly funded by the Russian Federation Ministry of Science and Higher  Education within the State assignment of the FSRC "Crystallography and Photonics"  RAS under agreement 007-ГЗ/Ч3363/26 (the design of experiment) and the Russian  Foundation for Basic Research under Projects Nos. 18-29-20006 and 18-07-00613  (experimental studies).
References:
  - Silva A, Monticone F,  Castaldi G, Galdi V, Alù A, Engheta N. Performing mathematical operations with  metamaterials. Science 2014; 343: 160-163. DOI: 10.1126/science.1242818.
 
- Solli DR, Jalali B. Analog optical computing. Nat Photonics 2015; 9: 704-706.
 
- Bykov DA, Doskolovich LL, Soifer VA. Temporal differentiation  of optical signals using resonant gratings. Opt Lett 2011; 36(17): 3509-3511.  DOI: 10.1364/OL.36.003509.
 
- Bykov DA, Doskolovich LL, Soifer VA.  Single-resonance diffraction gratings for time-domain pulse transformations:  integration of optical signals. J Opt Soc Am A 2012; 29(8): 1734-1740. DOI:  10.1364/JOSAA.29.001734.
 
- Doskolovich LL, Bykov DA, Bezus EA, Soifer VA.  Spatial differentiation of optical beams using phase-shifted Bragg grating. Opt  Lett 2014; 39(5): 1278-1281. DOI: 10.1364/OL.39.001278.
 
- Bykov DA, Doskolovich LL, Bezus EA, Soifer VA.  Optical computation of the Laplace operator  using phase-shifted Bragg grating. Opt Express 2014; 22(21): 25084-25092. DOI:  10.1364/OE.22.025084.
 
- Bykov DA, Doskolovich LL, Morozov  AA, Podlipnov VV, Bezus EA, Verma P, Soifer VA. First-order optical spatial  differentiator based on a guided-mode resonant grating. Opt Express 2018;  26(8): 10997-11006. DOI: 10.1364/OE.26.010997.
 
- Dong Z, Si J, Yu X, Deng X. Optical  spatial differentiator based on subwavelength high-contrast gratings. Appl Phys  Lett 2018; 112: 181102.
 
- Bykov DA, Doskolovich LL,  Golovastikov NV, Soifer VA. Time-domain differentiation of optical pulses in reflection  and in transmission using the same resonant grating. J Opt 2013; 15(10):  105703. DOI: 10.1088/2040-8978/15/10/105703. 
 
- Golovastikov NV, Bykov DA, Doskolovich LL. Resonant  diffraction gratings for spatial differentiation of optical beams. Quantum  Electronics 2014; 44(10): 984-988. DOI: 10.1070/QE2014v044n10ABEH015477.
 
- Zhu T, Zhou Y, Lou Y, Ye H, Qiu M,  Ruan Z, Fan S. Plasmonic computing of spatial differentiation. Nat Commun 2017;  8: 15391. DOI: 10.1038/ncomms15391.
 
- Ruan Z. Spatial mode control of  surface plasmon polariton excitation with gain medium: from spatial  differentiator to integrator. Opt. Lett. 2015; 40(4): 601–604.
 
- Golovastikov  NV, Doskolovich LL, Bezus EA, Bykov DA, Soifer VA. An optical differentiator  based on a three-layer structure with a W-shaped refractive index profile. J  Exp Theor Phys 2018; 127(2): 202-209. DOI: 10.1134/S1063776118080174.
 
- Youssefi A, Zangeneh-Nejad F,  Abdollahramezani S, Khavasi A. Analog computing by Brewster effect. Opt Lett  2016; 41(15): 3467-3470. DOI: 10.1364/OL.41.003467.
 
- Nesterenko DV, Kolesnikova MD,  Lyubarskaya AV. Optical differentiation based on the Brewster effect. Computer  Optics 2018; 42(5): 758-763. DOI: 10.18287/2412-6179-2018-42-5-758-763.
 
- Nesterenko  DV, Lyubarskaya AV, Kolesnikova MD, Soifer   VA. The dependence of the image  edge detection directivity by Brewster effect on the gradient of inhomogeneities  of objects. J Phys Conf Ser 2019; 1368: 022066. DOI:  10.1088/1742-6596/1368/2/022066. 
 
- Kolesnikova  MD, Lyubarskaya AV, Nesterenko DV, Soifer   VA. The resolution of optical  image edge detection based on Brewster effect. J Phys Conf Ser 2019; 1368:  022016. DOI: 10.1088/1742-6596/1368/2/022016. 
 
- Nesterenko  DV, Kolesnikova MD, Lyubarskaya AV, Soifer VA. Brewster effect in the broadband  light reflectivity. J Phys Conf Ser 2020; 1461: 012116. DOI:  10.1088/1742-6596/1461/1/012116. 
 
- Pors  A, Nielsen MG, Bozhevolnyi SI. Analog computing using reflective plasmonic  metasurfaces. Nano Lett 2015; 15(1): 791-797.
 
- Pors  A, Bozhevolnyi SI. Plasmonic metasurfaces for efficient phase control in  reflection. Opt Express 2013; 21(22): 27438-27451.
 
- Chizari A, Abdollahramezani S,  Jamali MV, Salehi JA. Analog optical computing based on a dielectric  meta-reflect array. Opt Lett 2016; 41(15): 3451-3454.
 
- Shu S, Li Z, Li YY. Triple-layer  Fabry-Perot absorber with near-perfect absorption in visible and near-infrared  regime. Opt Express 2013; 21(21): 25307-25315.
 
- Yan M. Metal–insulator–metal light  absorber: a continuous structure. J Opt 2013; 15(2): 025006.
 
- Cui  Y, He Y, Jin Y, Ding F, Yang L, Ye Y, He S. Plasmonic and metamaterial  structures as electromagnetic absorbers. Laser Photonics Rev 2014; 8(4):  495-520.
 
- Ng  C, Wesemann L, Panchenko E, Song J, Davis TJ, Roberts  A, Gómez DE.  Plasmonic Near‐Complete Optical Absorption and Its  Applications. Adv Opt Mater 2019; 7(14): 1801660.
 
- Li  Z, Butun S, Aydin K. Large-area, lithography-free super absorbers and color  filters at visible frequencies using ultrathin metallic films. ACS Photonics  2015; 2(2): 183-188.
 
- Wesemann  L, Panchenko E, Singh K, Della Gaspera E, Gómez   DE, Davis TJ, Roberts A.  Selective near-perfect absorbing mirror as a spatial frequency filter for  optical image processing. APL Photonics 2019; 4(10): 100801.
 
- Nesterenko  DV. Resonance characteristics of transmissive optical filters based on metal/dielectric/metal  structures. Computer Optics 2020; 44(2): 219-228. DOI:  10.18287/2412-6179-CO-681. 
- Nesterenko D, Hayashi S, Soifer V. Approximation of  Fabry-Pérot resonances in Ag/quartz/Ag structures. 2020 International  Conference on Information Technology and Nanotechnology (ITNT) 2020: 1-3. DOI:  10.1109/ITNT49337.2020.9253286. 
 
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20