(45-5) 14 * << * >> * Russian * English * Content * All Issues
  
Classification of plumage images for identifying bird species
  A.V. Belko 1, K.S. Dobratulin 1,2, A.V. Kuznetsov 1,3
1 Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34,
    2 National University of Science and Technology "MISiS",
     119049, Moscow, Russia, Leninsky Prospect 4,
    3 IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
  443001, Samara, Russia, Molodogvardeyskaya 151
 PDF, 1438 kB
  PDF, 1438 kB
DOI: 10.18287/2412-6179-CO-836
Pages: 728-735.
Full text of article: Russian language.
 
Abstract:
This  paper studies the possibility of using neural networks to classify plumage  images in order to identify bird species. Taxonomic identification of bird  plumage is widely used in aviation ornithology to analyze collisions with  aircraft and develop methods for their prevention. This article provides a  method for bird species identification based on a dataset made up in the  previous research. A method for identifying birds from real-world images based  on YoloV4 neural networks and DenseNet models is proposed. We present results  of the feather classification task. We selected several deep learning architectures  (DenseNet based) for a comparison of categorical crossentropy values on the  provided dataset. The experimental evaluation has shown that the proposed  method allows determining the bird species from a photo of an individual  feather with an accuracy of up to 81.03 % for accurate  classification, and with an accuracy of 97.09 % for the first  five predictions.
Keywords:
machine vision, pattern  recognition, neural networks, aviation ornithology.
Citation:
  Belko AV, Dobratulin KS, Kuznetsov AV. Classification of plumage images for identifying bird species. Computer Optics 2021; 45(5): 749-755. DOI: 10.18287/2412-6179-CO-836.
References:
  - Soldatini С, Georgalas V, Torricelli P, Albores-Barajas YV. An  ecological approach to birdstrike risk analysis. Eur J Wildl Res 2010; 56(4):  623-632.
 
- Yang R, Wu XB, Yan P, Li  XQ. Using DNA barcodes to identify a bird involved in a birdstrike at a Chinese  airport. Mol Biol Rep 2010; 37(7): 3517-3523.
 
- Belko A, Dobratulin K, Kuznetsov A.  Feathers dataset for fine-grained visual  categorization. Proc SPIE 2020; 11605: 1160518. DOI: 10.1117/12.2588386.
 
- Berg T, Liu J, Lee SW, Alexander ML,  Jacobs DW, Belhumeur PN. Birdsnap: Large-scale fine-grained visual  categorization of birds. IEEE Conf on Computer Vision and Pattern Recognition  (CVPR) 2014: 2019-2026.
 
- Fu  J, Zheng H, Mei T. Look closer to see better: Recurrent attention convolutional  neural network for fine-grained image recognition. 2017 IEEE Conf on Computer Vision  and Pattern Recognition (CVPR) 2017: 4476-4484.
 
- Araujo VM, Britto AS,  Brun AL, Oliveira LES, Koerich AL. Fine-grained hierarchical classification of  plant leaf images using fusion of deep models. IEEE 30th Int Conf on  Tools with Artificial Intelligence (ICTAI) 2018: 4476-4484.
 
- Yang  LJ, Luo P, Loy CC, Tang X. A large-scale car dataset for fine-grained  categorization and verification. IEEE Conf on Computer Vision and Pattern  Recognition (CVPR) 2015: 3973-3981.
 
- Hou  SH, Feng YS, Wang ZL. VegFru: A domain-specific dataset for fine-grained visual  categorization. IEEE Int Conf on Computer Vision (ICCV) 2017: 541-549.
 
- Dai  XY, Southall B, Trinh N, Matei B. Efficient fine-grained classification and  part localization using one compact network. IEEE Int Conf on Computer Vision  Workshops (ICCVW 2017) 2017: 996-1004.
 
- Zhao  B, Feng JS, Wu X, Yan SC. A survey on deep learning-based  fine-grained object classification and semantic segmentation. Int J Autom  Comput 2017; 14(2): 119-135. 
 
- Priyadharshini P, Thilagavathi K.  Hyperspectral image classification using MLL and Graph cut methods. Proc 2016  Online Int Conf on Green Engineering and Technologies (IC-GET) 2016: 1-6.
 
- Pandey M, Lazebnik S. Scene recognition and weakly supervised  object localization with deformable part-based models. IEEE Int Conf on Computer  Vision (ICCV) 2011: 1307-1314.
 
- Silla CN, Freitas AA. A survey of  hierarchical classification across different application domains. Data Min  Knowl Discov 2011; 22(1-2): 31-72.
 
- Krause J, Leibe B, Matas J. The  unreasonable effectiveness of noisy data for fine-grained recognition. In Book:  Leibe B, Matas J, Sebe N, Welling M, eds. Computer vision – ECCV 2016, Pt III. Springer  International Publishing AG; 2016: 301-320.
 
- Mitchell R. Web scraping with  Python: Collecting data from the Modern Web. Sebastopol:  O'Reilly Media; 2015.
 
- Glumov NI, Myasnikov VV, Sergeev VV.  Detection and recognition of objects in images [In Russian]. Samara: Samara University  Publisher; 2010.
 
- Zhu QF, Zheng HF, Wang YB, Cao YG, Guo SX. Study on  the evaluation method of sound phase cloud maps based on an improved YOLOv4  algorithm. Sensors 2020; 20(15): 4314.
 
- Redmon J, Divvala S, Girshick R,  Farhadi A. You ONLY LOOK ONCE: Unified, real-time object detection. IEEE Conf  on Computer Vision and Pattern Recognition (CVPR) 2016: 779-788.
 
- Sarkar D, Bali R, Ghosh T. Hands-on  transfer learning with Python. Birmingham:  Packt Publishing; 2018.
 
- Lin T-Y, Maire M, Belongie S, Hays  J, Perona P, Ramanan D, Dollar P, Zitnick CL. Microsoft COCO: common objects in  context. In Book: Fleet D, Pajdla T, Schiele B, Tuytelaars T, eds. Computer  vision – ECCV 2014, Part V. New York:  Springer; 2014: 740-755.
 
- International code of zoological  nomenclature. London: I Natural History   Museum; 1999.
 
- Huang G, Liu Z, Van Der Maaten L.  Densely connected convolutional networks. 30th IEEE Conf on Computer  Vision and Pattern Recognition (CVPR) 2017: 2261-2269.
 
- Valev K, Schumann A, Sommer L, Beyerer J. A systematic  evaluation of recent deep learning architectures for fine-grained vehicle  classification. Proc SPIE 2018: 10649: 1064902. 
- Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman  A. The PASCAL Visual Object Classes (VOC) Challenge. Int J Comput Vis 2010; 88:  303-338. 
 
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20