(45-5) 17 * << * >> * Russian * English * Content * All Issues
  
Comparison of numerical integration methods for calculating diffraction of a plane electromagnetic wave by a rectangular aperture
  A.S. Mokeev 1, V.M. Yamshchikov 1
1 Federal State Unitary Enterprise RUSSIAN FEDERAL NUCLEAR CENTER,
     All-Russian Research Institute of Experimental Physics (FSUE "RFNC – VNIIEF"),
  The Institute of Laser Physics (ILFI), 607188, Sarov, Nizhny Novgorod region, Mira Ave, 37
 PDF, 889 kB
  PDF, 889 kB
DOI: 10.18287/2412-6179-CO-877
Pages: 773-778.
Full text of article: Russian language.
 
Abstract:
We discuss features of  the calculation of a Fraunhofer integral by traditional quadrature numerical  integration methods and a special collocation Levin method when calculating the  diffraction of a plane electromagnetic wave by a rectangular aperture. For the  quadrature numerical integration methods, a criterion for the assessment of the  integration step is derived  depending on  the screen size and required calculation accuracy. Advantages of the use of the  special collocation Levin method in comparison with the traditional quadrature  numerical integration methods are shown.
Keywords:
diffraction integral,  integration of oscillatory functions, method of rectangles, trapezium method,  Levin method, Fraunhofer diffraction.
Citation:
  Mokeev AS, Yamschikov VM. Comparison of numerical integration methods for calculating diffraction of a plane electromagnetic wave diffraction on rectangular aperture. Computer Optics 2021; 45(5): 773-778. DOI: 10.18287/2412-6179-CO-877.
References:
  - Akhmanov  SA, Nikitin SYu. Physical optics. Oxford: Clarendon Press; 1997.
 
- Born  M, Wolf E. Principles of optics. Electromagnetic theory of propagation,  interference and diffraction of light. 7th ed. Cambridge:  Cambridge University Press, 1999.
 
- Ustinov AV. The fast  way for calculation of first class Rayleigh-Sommerfeld integral [In Russian]. Computer Optics  2009; 33(4): 412-419. 
 
- Veerman JAC.  Calculation of the Rayleigh-Sommerfeld diffraction integral by exact  integration of the fast oscillating factor. J Opt Soc Am 2005; 22(4):  636-646.
 
- Kalitkin  NN. Numerical methods [In Russian]. Moscow:  "Nauka" Publisher; 1986.
 
- Samarskii AA,  Gulin AV. Numerical methods [In Russian]. Moscow:  "Nauka" Publisher; 1989. 
 
- Sobol IM. A  primer for the Monte Carlo method. Boca Raton, FL:  CRC Press; 1994.
 
- Jeffery  GB. Louis Napoleon George Filon, 1875-1937. Obit Not Fell R Soc 1939; 2(7):  501-509. DOI: 10.1098/rsbm.1939.0010.
 
- Levin  D. Procedures for computing one and two-dimensional integrals of functions with  rapid irregular oscillations. Math Comp 1982, 38(158): 531-538.
 
- Li  J, Wang X, Wang T. A universal solution to one-dimensional oscillatory  integrals. Sci China  Ser F-Inf Sci 2008; 51(10): 1614-1622. DOI: 10.1007/s11432-008-0121-2.
 
- Lovetskiy  KP, Sevastyanov LA, Sevastyanov AL, Mekeko NM. Integration of highly  oscillatory functions. Mathematical Modelling and Geometry 2014; 2(3): 11-27.  DOI: 10.26456/mmg/2015-312.
 
- Liu  Y. Fast evaluation of canonical oscillatory integrals. Appl Math Inf Sci 2012;  6(2): 245-251.
 
- Lovetskiy KP, Migal IA. Comparison of methods for calculation of oscillatory  integrals [In Russian]. Naukovedenie 2015; 7(2). Source: <http://naukovedenie.ru/PDF/70TVN315.pdf>.
 
- Fikhtengol’ts  GM. Differential- und Integralrechnung. II [In German]. Berlin: VEB Deutscher Verlag der Wissenschaften;  1978. 
- Mason JC, Handscomb   DC. Chebyshev polynomials. Chapman  & Hall /CRC Press; 2002. 
 
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20