(46-1) 05 * << * >> * Russian * English * Content * All Issues
  
Generation and focusing of a second-order vector beam using a subwavelength optical element
  S.A. Degtyarev 1,2, D.A. Savelyev 1,2
1 IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
     443001, Samara, Russia, Molodogvardeyskaya 151,
    2 Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34
  PDF, 1220 kB
DOI: 10.18287/2412-6179-CO-1053
Pages: 39-47.
Full text of article: Russian language.
 
Abstract:
This article proposes a  new type of subwavelength axicons for creating and focusing second-order vector  cylindrical beams. It is also shown that using the proposed subwavelength  axicons, it is possible to create focal spots with an energy backflow. The  Comsol Multiphysics software is used to simulate the operation of subwavelength  axicons with different twist angles. The dependence of the obtained intensity  distributions on the angle of twist of the axicon spiral is investigated.
Keywords:
subwavelength axicons,  vector cylindrical beams, finite element method, backflow, Comsol Multiphysics.
Citation:
  Degtyarev SA, Savelyev DA. Generation and focusing of a second-order vector beam using a subwavelength optical element. Computer Optics 2022; 46(1): 39-47. DOI: 10.18287/2412-6179-CO-1053.
Acknowledgements:
  This work was supported by funding from the Samara University Development Program for 2021-2030 within the framework of the Priority-2030 program in the Introduction part and the Russian Science Foundation (project No. 20-72-00051) in the remaining parts.
References:
  - Xiao S, Wang T, Liu T,  Zhou C, Jiang X, Zhang J. Active metamaterials and metadevices: a review. J Phys D–Appl Phys 2020; 53(50): 503002. DOI:  10.1088/1361-6463/abaced.
 
  - Krzysztofik WJ, Cao TN.  Metamaterials in application to improve antenna parameters. Metamaterials and Metasurfaces 2018; 12(2): 63-85. DOI:  10.5772/intechopen.80636. 
     - Gnawali  R, Banerjee PP, Haus JW, Reshetnyak V, Evans DR. Optical propagation through  anisotropic metamaterials: Application to metallo-dielectric stacks. Opt Commun 2018; 425: 71-79. DOI: 10.1016/j.optcom.2018.04.069.
       - Chon  JWM, Iniewski K. Nanoplasmonics: advanced device applications. CRC Press; 2018.  ISBN: 978-1-4665-1426-3.
       - Soukoulis  CM, Wegener M. Past achievements and future challenges in the development of  three-dimensional photonic metamaterials. Nat Photon 2011; 5(9): 523. DOI: 10.1038/nphoton.2011.154.
       - Petronijevic  E, Sibilia C. Thin films of phase change materials for light control of  metamaterials in the optical and infrared spectral domain. Opt Quantum Electron 2020; 52(2): 1-10. DOI: 10.1007/s11082-020-2237-6.
       - Cui TJ. Microwave metamaterials—from  passive to digital and programmable controls of electromagnetic waves. J Opt 2017; 19(8): 084004. DOI: 10.1088/2040-8986/aa7009.
       - Shalaev  VM, Cai W, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Kildishev AV.  Negative index of refraction in optical metamaterials. Optics Letters 2005;  30(24): 3356-3358. DOI: 10.1364/OL.30.003356
       - Gómez-Castaño  M, Garcia-Pomar JL, Pérez LA, Shanmugathasan S, Ravaine S, Mihi A.  Electrodeposited negative index metamaterials with visible and near infrared response.  Adv Opt Mater 2020; 8(19): 2000865. DOI: 10.1002/adom.202000865.
       - Lapine  M, Shadrivov IV, Kivshar YS. Colloquium: nonlinear metamaterials. Rev Mod Phys  2014; 86(3): 1093. DOI: 10.1103/RevModPhys.86.1093.
       - Boltasseva  A, Atwater HA.  Low-loss plasmonic metamaterials. Science 2011; 331(6015): 290-291. DOI: 10.1126/science.1198258.
       - Bukhari  SS, Vardaxoglou JY, Whittow W. A metasurfaces review: Definitions and  applications. Appl Sci 2019; 9(13): 2727. DOI: 10.3390/app9132727.
       - Kildishev  AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 2013;  339(6125): 1232009. DOI: 10.1126/science.1232009.
       - Zhang  X, Li Q, Liu F, Qiu M, Sun S, He Q, Zhou L. Controlling angular dispersions in  optical metasurfaces. Light Sci Appl  2020; 9(1): 1-12. DOI: 10.1038/s41377-020-0313-0.
       - Han  Y, Chen S, Ji C, Liu X, Wang Y, Liu J, Li J. Reprogrammable optical  metasurfaces by electromechanical reconfiguration. Opt Express 2021; 29(19):  30751-30760. DOI: 10.1364/OE.434321.
       - Dorrah  AH, Rubin NA, Zaidi A, Tamagnone M, Capasso F. Metasurface optics for on-demand  polarization transformations along the optical path. Nat Photon 2021; 15(4):  287-296. DOI: 10.1038/s41566-020-00750-2.
       - McLeod  JH. The axicon: a new type of optical element. J Opt Soc Am 1954; 44(8): 592-597. DOI: 10.1364/JOSA.44.000592.
       - Alferov  SV, Khonina SN, Karpeev SV. Study of polarization properties of fiber-optics  probes with use of a binary phase plate. J Opt Soc Am A 2014; 31(4): 802-807.  DOI: 10.1364/JOSAA.31.000802.
       - Khonina  S, Degtyarev S, Savelyev D, Ustinov A. Focused, evanescent, hollow, and  collimated beams formed by microaxicons with different conical angles. Opt Express 2017; 25(16):  19052-19064. DOI: 10.1364/OE.25.019052.
       - Filipkowski  A, Piechal B, Pysz D, Stepien R, Waddie A, Taghizadeh MR, Buczynski R.  Nanostructured gradient index microaxicons made by a modified stack and draw  method Opt Lett 2015; 40(22): 5200-5203. DOI: 10.1364/OL.40.005200.
       - Savelyev  DA, Ustinov AV, Khonina SN, Kazanskiy NL.  Layered lens with a linear dependence of the refractive index change. Proc SPIE  2016; 9807: 98070P. DOI: 10.1117/12.2234404.
       - Golub  I, Chebbi B, Shaw D, Nowacki D. Characterization of a refractive logarithmic  axicon. Opt Lett 2010; 35(16): 2828-2830. DOI: 10.1364/OL.35.002828.
       - Gorelick  S, Paganin DM, de Marco A. Axilenses: refractive micro-optical elements with  arbitrary exponential profiles. APL Photonics 2020; 5(10): 106110. DOI: 10.1063/5.0022720.
       - Khonina  SN, Ustinov AV. Very compact focal spot in the near-field of the fractional  axicon. Opt Commun 2017; 391: 24-29. DOI: 10.1016/j.optcom.2016.12.034.
       - Khonina  SN, Savel'ev DA, Pustovoĭ IA, Serafimovich PG. Diffraction at binary  microaxicons in the near field. J Opt  Technol 2012; 79(10): 626-631. DOI: 10.1364/JOT.79.000626.
       - Savelyev  DA, Khonina SN. Characteristics of sharp focusing of vortex Laguerre-Gaussian  beams. Computer Optics  2015; 39(5): 654-662. DOI:  10.18287/0134-2452-2015-39-5-654-662.
       - Westheimer  G. Focused and defocused retinal images with Bessel and axicon pupil functions.  J Opt Soc Am A 2020; 37(1): 108-114. DOI: 10.1364/JOSAA.37.000108.
       - Savelyev  DA. The investigation of the features of focusing vortex super-Gaussian beams  with a variable-height diffractive axicon. Computer Optics 2021; 45(2):  214-221. DOI: 10.18287/2412-6179-CO-862.
       - Khonina  SN, Savelyev DA, Kazanskiy NL. Analysis of polarisation states at sharp  focusing. Optik 2016; 127(6):  3372-3378. DOI: 10.1016/j.ijleo.2015.12.108.
       - Rajesh  KB, Suresh NV, Anbarasan PM, Gokulakrishnan K,  Mahadevan G. Tight focusing of double ring shaped radially polarized beam with  high NA lens axicon. Opt Laser Technol  2011; 43(7): 1037-1040.  DOI: 10.1016/j.optlastec.2010.11.009.
       - Savelyev D, Kazanskiy N. Near-field vortex beams diffraction  on surface micro-defects and diffractive axicons for polarization state  recognition. Sensors 2021; 21(6): 1973. DOI: 10.3390/s21061973. 
       - Khonina  SN, Volotovsky SG. Application axicons in a large-aperture focusing system. Optical Memory and Neural Networks 2014;  23(4): 201-217. DOI: 10.3103/S1060992X14040043.
       - Savelyev DA. The sub-wavelength complex  micro-axicons for focal spot size reducing using high-performance computer  systems. Proc SPIE 2021; 11769: 1176918. DOI: 10.1117/12.2589220. 
       - Savelyev  DA, Khonina SN. Maximising the longitudinal electric component at diffraction  on a binary axicon linearly polarized radiation. Computer Optics 2012; 36(4):  511-517.
       - Khonina SN,  Karpeev SV, Alferov SV, Savelyev DA, Laukkanen J, Turunen J. Experimental  demonstration of the generation of the longitudinal E-field component on the  optical axis with high-numerical-aperture binary axicons illuminated by  linearly and circularly polarized beams. J Opt 2013; 15(8): 085704. DOI: 10.1088/2040-8978/15/8/085704.
       - Khonina  SN, Degtyarev SA. Analysis of the formation of a longitudinally polarized  optical needle by a lens and axicon under tightly focused conditions. J Opt Technol 2016; 83(4): 197-205.  DOI: 10.1364/JOT.83.000197.
       - Ravi V, Suresh P, Rajesh KB, Jaroszewicz Z,  Anbarasan PM, Pillai TVS. Generation of sub-wavelength longitudinal magnetic  probe using high numerical aperture lens axicon and binary phase plate. J Opt 2012; 14(5): 055704. DOI: 10.1088/2040-8978/14/5/055704.
       - Zhan  Q. Cylindrical vector beams: from mathematical concepts to applications. Adv  Opt Photonics 2009; 1(1): 1-57. DOI: 10.1364/AOP.1.000001.
       - Savelyev DA. The investigation of focusing of  cylindrically polarized beams with the variable height of optical elements  using high-performance computer systems. Proc SPIE 2021; 11793: 117930X. DOI: 10.1117/12.2591993. 
       - Livakas N, Skoulas E, Stratakis E. Omnidirectional  iridescence via cylindrically-polarized femtosecond laser processing.  Opto-Electron Adv 2020; 3(5): 190035. DOI: 10.29026/oea.2020.190035. 
       - Degtyarev  SA, Volotovsky SG, Khonina SN. Sublinearly chirped metalenses for forming  abruptly autofocusing cylindrically polarized beams. J Opt Soc Am B 2018;  35(8): 1963-1969. DOI: 10.1364/JOSAB.35.001963.
       - Savelyev  DA, Khonina SN, Golub I. Tight focusing of higher orders Laguerre-Gaussian  modes. AIP Conf Proc 2016; 1724: 020021. DOI: 10.1063/1.4945141.
       - Qiao  W, Lei T, Wu Z, Gao S, Li Z, Yuan X. Approach to multiplexing fiber  communication with cylindrical vector beams. Opt Lett 2017; 42(13):  2579-2582. DOI: 10.1364/OL.42.002579.
       - Millione  G, Nguyen ThA, Leach J, Nolan DA, Alfano RR. Using the nonseparability of  vector beams to encode information for optical communication. Opt Lett 2015;  40(21): 4887-4890. DOI: 10.1364/OL.40.004887.
       - Zhou  Z, Zhu L. Tight focusing of axially symmetric polarized beams with fractional  orders. Opt Quant Electron 2015; 48: 1-9. DOI: 10.1007/s11082-015-0260-9.
       - Khonina SN,  Ustinov AV, Degtyarev SA., Inverse energy flux of focused radially polarized  optical beams. Phys Rev A 2018; 98(4): 043823. DOI: 10.1103/PhysRevA.98.043823.
       - Stafeev  SS, Nalimov AG, Kotlyar VV. Energy backflow in a focal spot of the cylindrical  vector beam. Computer Optics 2018; 42(5): 744-750. DOI:  10.18287/2412-6179-2018-42-5-744-750.
       - Novitsky  AV, Novitsky DV. Negative propagation of vector Bessel beams. J Opt Soc Am A  2007; 24(9): 2844-2849. DOI: 10.1364/JOSAA.24.002844.
       - Guarnieri  G, Uchiyama C, Vacchini B. Energy backflow and non-Markovian dynamics. Phys Rev A 2016; 93(1): 012118. DOI: 10.1103/PhysRevA.93.012118.
       - Kotlyar VV,  Nalimov AG. A vector optical vortex generated and focused using a metalens.  Computer Оptics 2017; 41(5): 645-654. DOI:  10.18287/2412-6179-2017-41-5-645-654.
       - Kotlyar  VV, Stafeev SS, Nalimov AG. Energy backflow in the focus of a light beam with  phase or polarization singularity. Phys Rev A 2019; 99(3): 033840. DOI: 10.1103/PhysRevA.99.033840.
       - Kos Ž, Ravnik M. Field generated nematic  microflows via backflow mechanism. Sci  Rep 2020; 10(1): 1-10.  DOI: 10.1038/s41598-020-57944-5.
       - Khonina  SN, Savelyev DA. Optimization of the optical microelements using  high-performance computer systems. Radiophys Quant El+ 2015; 57(8-9): 650-658.  DOI: 10.1007/s11141-015-9550-0.
       - Degtyarev  SA, Savelyev DA, Khonina SN. Subwavelength diffraction grating with continuous  ridges for inverse energy flux generation. PIERS-Spring 2019: 2005-2010. DOI: 10.1109/PIERS-Spring46901.2019.9017337.
       - Vajdi  M, Moghanlou FS, Sharifianjazi F, Asl MS, Shokouhimehr M. A review on the  Comsol Multiphysics studies of heat transfer in advanced ceramics. J Compos Compd 2020; 2(2): 35-43. DOI: 10.29252/jcc.2.1.5.
       - Degtyarev  SA, Savelyev DA, Karpeev SV. Diffractive optical elements for generating  cylindrical beams of different orders. Computer Optics 2019; 43(3):  347-355. DOI: 10.18287/2412-6179-2019-43-3-347-355.
       - Degtyarev  S, Savelyev D, Khonina S, Kazanskiy N. Metasurfaces with continuous ridges for  inverse energy flux generation. Opt  Express 2019; 27(11): 15129-15135. DOI: 10.1364/OE.27.015129.
       - Bomzon  ZE, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam–Berry phase  optical elements with computer-generated subwavelength gratings. Opt Lett 2002;  40(21): 1141-1143. DOI: 10.1364/OL.27.001141.       
      
 - Khonina SN, Tukmakov KN, Degtyarev SA, Reshetnikov AS,  Pavelyev VS, Knyazev BA, Choporova YuYu. Design, fabrication and investigation  of a subwavelength axicon for terahertz beam polarization transforming. Computer  Optics 2019; 43(5): 756-764. DOI: 10.18287/2412-6179-2019-43-5-756-764. 
       
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20