(46-1) 11 * << * >> * Russian * English * Content * All Issues
  
Classification of Sentinel-2 satellite images of the Baikal Natural Territory
  I.V. Bychkov 1, G.M. Ruzhnikov 1, R.K. Fedorov 1, A.K. Popova 1, Y.V. Avramenko 1
1 ISDCT SB RAS – Matrosov Institute for System Dynamics and Control Theory of the Siberian Branch of the RAS,
664033, Irkuts, Russia, Lermontova 134
  PDF, 4323 kB
DOI: 10.18287/2412-6179-CO-1022
Pages: 90-96.
Full text of article: Russian language.
 
Abstract:
The paper considers a  problem of classifying Sentinel-2 multispectral satellite images for environmental  monitoring of the Baikal Natural Territory (BNT). The specificity of the BNT  required the creation of a new set of 12 classes, which takes into account  current problems. The set was formed in such a way that the areas corresponding  to these classes completely covered the BNT. A training dataset was formed  using a web interface based on Sentinel-2 satellite images. The classification  of satellite images was carried out using Random Forest  algorithms and the ResNet50 neural network. The accuracy of the calculations  showed that the classification results can be used to solve actual problems of  the Baikal natural territory, in particular, to analyze changes in the forestland,  assess the impact of climate change on the landscape, analyze the dynamics of  development activities, create farmland inventory, etc.
Keywords:
neural networks,  classification, Sentinel-2, remote sensing, image processing.
Citation:
  Bychkov IV, Ruzhnikov GM, Fedorov RK, Popova AK, Avramenko YV. Classification of Sentinel-2 satellite images of the Baikal Natural Territory. Computer Optics 2022; 46(1): 90-96. DOI: 10.18287/2412-6179-CO-1022.
Acknowledgements:
  The work was financially supported by the Ministry of Science and Higher Education of the Russian Federation under grant No. 075-15-2020-787 for the implementation of a major research project in priority areas of scientific and technological development, "Fundamentals, methods and technologies for digital monitoring and forecasting of the ecological situation of the Baikal Natural Territory".
References:
  - Talukdar S, Singha  P, Mahato S, Pal S, Liou YA, Rahman A. Land-use land-cover classification by  machine learning classifiers for satellite observations – A review. Remote Sens  2020; 12(7): 1135. DOI: 10.3390/rs12071135.
 
  - Keshtkar H, Voigt W,  Alizadeh E. Land-cover classification and analysis of change using  machine-learning classifiers and multi-temporal remote sensing imagery. Arab J  Geosci 2017; 10: 154. DOI: 10.1007/s12517-017-2899-y. 
     - Lastovicka  J, Svec P, Paluba D, Kobliuk N, Svoboda J, Hladky R, Stych P. Sentinel-2 data  in an evaluation of the impact of the disturbances on forest vegetation. Remote  Sens 2020; 12(12): 1914. DOI: 10.3390/rs12121914. 
       - Puletti  N, Chianucci F, Castaldi C. Use of Sentinel-2 for forest classification in  Mediterranean environments. Ann Silvic Res 2018; 42(1): 32-38. DOI:  10.12899/ASR-1463. 
       - Terekhin  EA. Indication of long-term changes in the vegetation of abandoned agricultural  lands for the forest-steppe zone using NDVI time series. Computer Optics 2021;  45(2): 245-252. DOI: 10.18287/2412-6179-CO-797.
       - Belov  AM, Denisova AY. Earth remote sensing imagery classification using a  multi-sensor super-resolution fusion algorithm. Computer Optics 2020; 44(4):  627-635. DOI: 10.18287/2412-6179-CO-735.
       - Borzov SM, Potaturkin OI. Increasing  the classification efficiency of hyperspectral images due to multi-scale  spatial processing. Computer Optics 2020; 44(6): 937-943. DOI:  10.18287/2412-6179-CO-779. 
       - Grabska  E, Frantz D, Ostapowicz K. Evaluation of machine learning algorithms for  forestst and species mapping using Sentinel-2 imagery and environmental data in  the Polish Carpathians. Remote Sens Environ 2020; 251: 112103. DOI:  10.1016/j.rse.2020.112103. 
       - Rodriguez-Galiano  VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP. An assessment of the  effectiveness of a random forest classifier for land-cover classification.  ISPRS J Photogramm Remote Sens 2012; 67: 93-104. DOI:  10.1016/j.isprsjprs.2011.11.002.
       - Feng Q,  Liu J, Gong J. UAV Remote sensing for urban vegetation mapping using random  forest and texture analysis. Remote Sens 2015; 7(1): 1074-1094. DOI:  10.3390/rs70101074.
       - Liu Y,  Gong W, Hu X, Gong J. Forest type identification with random forest using  Sentinel-1A, Sentinel-2A, multi-temporal Landsat-8 and DEM data. Remote Sens  2018; 10(6): 946. DOI: 10.3390/rs10060946. 
       - Alhassan  V, Henry C, Ramanna S, Storie C. A deep learning framework for  land-use/land-cover mapping and analysis using multispectral satellite imagery.  Neural Comput Appl 2020; 32: 8529-8544. DOI: 10.1007/s00521-019-04349-9.
       - Carranza-García  M, García-Gutiérrez J, Riquelme JC. A framework for evaluating land use and  land cover classification using convolutional neural networks. Remote Sens  2019; 11(3): 274. DOI: 10.3390/rs11030274.
       - Zhang W,  Tang P, Zhao L. Fast and accurate land cover classification on medium  resolution remote sensing images using segmentation models. Int J Remote Sens  2021; 42(9): 3277-3301. DOI: 10.1080/01431161.2020.1871094.
       - Chambon  T. Fighting hunger through open satellite data: A new state of the art for land  use classification. 2019. Source: <https://medium.com/omdena/fighting-hunger-through-open-satellite-data-a-new-state-of-the-art-for-land-use-classification-f57f20b7294b>.
       - Helber  P, Bischke B, Dengel A, Borth D. Introducing Eurosat: A Novel Dataset and Deep  Learning Benchmark for land use and land cover classification. 2018 IEEE Int Geoscience  and Remote Sensing Symposium (IGARSS 2018) 2018: 204-207. DOI: 10.1109/IGARSS.2018.8519248.       
      
 - Bychkov IV, Ruzhnikov GM, Fedorov RK, Avramenko  YV, Shumilov AS, Shigarov AO, Verhozina AV,       Emelyanova NV, Sorokovoi AA.  Technology of information and analytical support for interdisciplinary  environmental studies in the Baikal Region. In Book: Bychkov I, Voronin V, eds.  Information technologies in the research of biodiversity. Switzerland AG: Springer  Nature; 2019: 116-124. DOI: 10.1007/978-3-030-11720-7_16. 
       
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20