(46-2) 16 * << * >> * Russian * English * Content * All Issues

Identifying persons from iris images using neural networks for image segmentation and feature extraction
Yu.Kh. Ganeeva 2, E.V. Myasnikov 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 932 kB

DOI: 10.18287/2412-6179-CO-1023

Pages: 308-316.

Full text of article: Russian language.

Abstract:
The problem of personal identification plays an important role in information security. In recent years, biometric methods of personal identification have become most relevant and promising. The article presents a study of a method for identifying a person from iris images using a neural network approach at the stages of segmentation and a feature representation from the data. A description of a dataset used to implement the segmentation stage using convolutional neural networks is presented and access to the segmentation masks of the entire dataset is provided. A method is proposed for extracting a feature representation of the data using pretrained convolutional neural networks to solve a problem of iris classification. A comparative analysis of methods for extracting iris features, including classical approaches and a neural network approach, has been carried out. A comparative analysis of classification methods is carried out, including classical machine learning algorithms, namely, support vector machines, random forest, and a k-nearest neighbors method. The results of experimental studies have shown the high quality of the classification based on the proposed approach.

Keywords:
iris, identification, convolutional neural networks, image segmentation, recognition.

Citation:
Ganeeva YK, Myasnikov EV. Identifying persons from iris images using neural networks for image segmentation and feature extraction. Computer Optics 2022; 46(2): 308-316. DOI: 10.18287/2412-6179-CO-1023.

Acknowledgements:
This work was supported by the RF Ministry of Science and Higher Education within the State assignment of the FSRC "Crystallography and Photonics" RAS. The Experiments section uses the MMU Iris Database dataset provided by Multimedia University [43].

References:

  1. Nemirovskiy VB, Stoyanov AK, Goremykina DS. Face recognition based on the proximity measure clustering. Computer Optics 2016; 40(5); 740-745. DOI: 10.18287/2412-6179-2016-40-5-740-745.
  2. Vizilter YuV, Gorbatsevich VS, Vorotnikov AV, Kostromov NA. Real-time face identification via CNN and boosted hashing forest. Computer Optics 2017; 41(2); 254-265. DOI: 10.18287/2412-6179-2017-41-2-254-265.
  3. Hashemi J, Fatemizadeh E. Biometric identification through hand geometry. EUROCON, Int Conf Computer as a Tool 2005; 2: 1011-1014.
  4. Prasad SM, Govindan VK, Sathidevi PS. Bimodal personal recognition using hand images. Proc Int Conf on Advances in Computing Communication and Control (ICAC3) 2009: 403-409.
  5. Yuan W, Lixiu Y, Fuqiang Zh. A real time fingerprint recognition system based on novel fingerprint matching strategy. 8th Int Conf on Electronic Measurement and Instruments 2007: 1-81-1-85.
  6. Kaur M, Singh M, Girdhar A, Parvinder S. Fingerprint verification system using minutiae extraction technique. World Acad Sci Eng Technol 2008; 46: 497-502.
  7. Review of the international market of biometric technologies and their application in the financial sector. Source: <https://www.cbr.ru/Content/Document/File/36012/rev_bio.pdf>.
  8. Pavelyeva EA, Krylov AS, Ushmaev OS. Development of information technology of a person's personality on the iris of the eye based on the Hermite transformation. Source: <https://elibrary.ru/item.asp?id=13070173>.
  9. Gonzalez RC, Woods RE. Digital image processing. 3th ed. Boston: Addison-Wesley Longman Publishing Co Inc; 1992.
  10. Khan AA, Kumar S, Khan M. Iris pattern recognition using support vector machines and artificial neural networks. IJIREEICE 2014; 2(12): 2208-2211.
  11. Chen Y, Liu Y, Zhu X, Chen H, He F, Pang Y. Novel approaches to improve iris recognition system performance based on local quality evaluation and feature fusion. Sci World J 2014; 2014: 670934.
  12. Firake SG, Mahajan PM. Brief review of iris recognition using principal component analysis, independent component analysis and Gabor wavelet. Int J Eng Res Technol 2014; 3(3): 1290-1294.
  13. Manisha Nirgude SG. Iris recognition system based on multi-resolution analysis and support vector machine. Int J Comput Appl 2017; 173: 28-33.
  14. Rana HK, Azam MdS, Akhtar R, Quinn JMW, Moni MA. A fast iris recognition system through optimum feature extraction. Source: <https://doi.org/10.7287/peerj.preprints.27363v2>.
  15. Azam MD, Rana H. Iris recognition using convolutional neural network. Int J Comput Appl 2020; 175(12): 24-28.
  16. Nguyen K, Fookes C, Ross A, Sridharan S. iris recognition with off-the-shelf CNN features: A deep learning perspective. IEEE Access 2018; 6: 18848-18855.
  17. Daugman JG. How iris recognition works. Source: <https://ieeexplore.ieee.org/document/1262028>.
  18. Bakhtiari A, Shirazi A, Zahmati A. An efficient segmentation method based on local entropy characteristics of iris biometrics. World Acad Sci Eng Technol 2007; 28: 64-68.
  19. Barzegar N, Moin MS. A new approach for iris localization in iris recognition systems. Proc 6th IEEE/ACS Int Conf on Computer Systems and Applications (AICCSA '08) 2008: 516-523.
  20. Semyonov MS, Myasnikov EV. A comparison of iris image segmentation techniques. CEUR Workshop Proc 2018; 2210: 163-169. DOI: 10.18287/1613-0073-2018-2210-163-169.
  21. Liu N, Li H, Zhang M, Liu J, Sun Z, Tan T. Accurate iris segmentation in non-cooperative environments using fully convolutional networks. 2016 Int Conf on Biometrics (ICB) 2016: 1-8.
  22. Jalilian E, Uhl A. Iris segmentation using fully convolutional encoder–decoder networks. In Book: Bhanu B, Prof. Kumar A, eds. Deep learning for biometrics. Cham: Springer International Publishing; 2017: 133-155.
  23. Lozej J, Meden B, Štruc V, Peer P. end-to-end iris segmentation using U-Net. 2018 IEEE Int Work Conf on Bioinspired Intelligence (IWOBI) 2018: 1-6.
  24. Korobkin M, Odinokikh G, Efimov I, Solomatin I, Matveev I. Iris segmentation in challenging conditions. Pattern Recognit Image Anal 2018; 28: 652-657.
  25. Pathak MP, Bairagi V, Srinivasu N. Effective segmentation of sclera, iris and pupil in eye images. TELKOMNIKA (Telecommunication Computing Electronics and Control) 2019; 17(5): 101-111.
  26. Li YH, Huang PJ, Juan Y. An efficient and robust iris segmentation algorithm using deep learning. Source: <https://doi.org/10.1155/2019/4568929>.
  27. Pathak MP, Bairagi V, Srinivasu N. Entropy based CNN for segmentation of noisy color eye images using color, texture and brightness contour features journal. Int J Recent Technol Eng 2019; 8(2): 2116-2124.
  28. Poonia J, Bhurani P, Gupta SK, Agrwal SL. New improved feature extraction approach of IRIS recognition. IJCS 2016; 3(1): 1-3.
  29. Pathak MP, Bairagi V, Srinivasu N. Multimodal eye biometric system based on contour based E-CNN and multi algorithmic feature extraction using SVBF matching. IJITEE 2019; 8(9): 417-423.
  30. Akbar S, Ahmad A, Hayat M. Iris detection by discrete sine transform based feature vector using random forest. JAEBS 2014; 4: 19-23.
  31. Ganeeva Yu, Myasnikov EV. Using convolutional neural networks for segmentation of Iris images. 2020 Int Multi-Conf on Industrial Engineering and Modern Technologies (FarEastCon) 2020: 1-4. DOI: 10.1109/FarEastCon50210.2020.9271541.
  32. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Source: <https://arxiv.org/abs/1505.04597>.
  33. Hashim AT, Saleh ZA. Fast Iris localization based on image algebra and morphological operations. JUBPAS 2019; 27(2): 143-154.
  34. Chirchi V, Waghmare LM. Enhanced isocentric segmentor and wavelet rectangular coder to iris segmentation and recognition. Int J Intell Eng Syst 2017; 10: 1-10.
  35. Khan T, Bailey D, Khan M, Kong Y. Real-time iris segmentation and its implementation on FPGA. J Real Time Image Process 2020; 17: 1089-1102.
  36. Jan F, Min-Allah N, Agha S. A robust iris localization scheme for the iris recognition. Source: <https://doi.org/10.1007/s11042-020-09814-5>.
  37. Lin M, Haifeng L, Kunpeng Yu. Fast iris localization algorithm on noisy images based on conformal geometric algebra. Digit signal proces 2020; 100: 102682.
  38. Wan HL, Li Z, Qiao JP, Li BS. Non-ideal iris segmentation using anisotropic diffusion. IET Image Proces 2013; 7: 111-120.
  39. Ganeeva Y, Myasnikov E. Augmentation in neural network training for person identification by iris images. 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT) 2021: 0106-0109. DOI: 10.1109/USBEREIT51232.2021.9455076.
  40. Masek L. Recognition of human iris patterns for biometric identification. Source: <http://www.csse.uwa.edu.au/~pk/studentprojects/libor/>.
  41. Advanced guide to Inception v3 on Cloud TPU. Source: <https://cloud.google.com/tpu/docs/inception-v3-avanced>.
  42. Huang G, Liu Z, Van der Maaten L, Weinberger KQ. Densely connected convolutional networks. Source: <https://arxiv.org/abs/1608.06993>.
  43. MMU Iris image database: Multimedia university. Source: <http://pesonna.mmu.edu.my/ccteo/>.
  44. Masks for MMU Iris dataset. Source: <https://github.com/jganeeva99/Masks-for-MMU-Iris-dataset>.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20