(47-1) 19 * << * >> * Russian * English * Content * All Issues
  
Classification of surface defects in the base metal of pipelines based on complex diagnostics results
  N.P. Aleshin 1, S.V. Skrynnikov 2, N.V. Krysko 1, N.A. Shchipakov 1, A.G. Kusyy 1
1 Federal State Budgetary Educational Institution of Higher Education «Bauman Moscow State Technical University»,
     105005, Moscow, Baumanskaya 2nd street, building 5 building 1;
  2 Public Joint Stock Company Gazprom, 117997, Moscow, Russian Federation, GSP-7, Nametkina St., 16
 PDF, 2575 kB
  PDF, 2575 kB
DOI: 10.18287/2412-6179-CO-1185
Pages: 170-178.
Full text of article: Russian language.
 
Abstract:
We discuss issues of  classification of operational volumetric and planar surface defects based on  the results of complex diagnostics by non-destructive ultrasonic sounding using  Rayleigh surface waves generated by an electromagnetic-acoustic transducer and  the eddy current method. The paper presents results of feature selection using  a variance analysis (ANOVA) and an Extra Trees Classifier algorithm, making it  possible to select an optimal eddy current transducer for surface defect  classification. The classification of surface defects by the amplitude of  ultrasonic and eddy current signals, as well as the phase of the eddy current  signal separately is shown to be unambiguous. Models for classifying surface  defects as being volumetric or planar are constructed based on statistical  methods such as Bayesian inference and the Dempster-Schafer theory. The workability  of the constructed classification models is evaluated using metrics such as the  Jaccard coefficient and the F1-measure.
Keywords:
surface defects, ultrasonic testing, eddy current testing, complex diagnostics, joint data evaluation, machine learning, Bayesian inference, Dempster-Schafer theory.
Citation:
  Aleshin NP, Skrynnikov SV, Krysko NV, Shchipakov NA, Kusyy AG. Classification of surface defects in the base metal of pipelines based on complex diagnostics results. Computer Optics 2023; 47(1): 170-178. DOI: 10.18287/2412-6179-CO-1185.
References:
  - Davydova DG. Defects in  process pipelines: typology, assessment of the impact on operation [In  Russian]. Prombezopasnost-Priuralye 2012; 8: 24-28.
- Yerekhinsky BA, Maslakov  SV, Shustov NI, Mitrofanov AV, Baryshov SN, Zaryaev MYu, Kravtsov AV, Yegorov SV.  Cracking of metal housings of Christmas-tree gate valves of northern fields gas  producers [In Russian]. Territory "Neftegaz" 2014; 2: 31-36. 
 
- Safina IS, Kauzova PA, Gushchin  DA. Assessment of the technical condition of vertical steel tanks [In Russian].  TekhNadzor 2016; 3(112): 39-42.
 
- Butusov DS, Egorov SI, Zavyalov  AP, Lyapichev DM. Stress corrosion cracking of gas pipelines: Textbook [In  Russian]. Moscow: Publishing Center  of the Russian State University of Oil and Gas named after I.M. Gubkin; 2015.
 
- Kalinichenko NP, Vasiliev MA. Atlas of defects in welded joints and base  metal: teaching aid [In Russian]. Tomsk:  Publishing House of Tomsk   Polytechnic University;  2006. ISBN: 978-5-98298-908-6.
 
- Aleshin NP. Physical methods of  non-destructive testing of welded joints: textbook [In Russian]. 2nd ed.,  revised. Moscow:  “Innovative Engineering” Publisher; 2019. ISBN: 978-5-94275-695-6.
 
- Kuncheva LI. Fuzzy classifier  design. Heidelberg:  Springer-Verlag; 2000. DOI: 10.1007/978-3-7908-1850-5.
 
- Fung G, Mangasarian O. Proximal  Support vector machine classifiers. Mach Learn 2005; 59(1-2): 77-97.
 
- Quinlan JR. Induction of  decision trees. Mach Learn 1986; 1: 81-106. DOI:10.1007/BF00116251.
 
- Minsky M, Papert SA.  Perceptrons: An introduction to computational geometry. The MIT Press; 2017.  DOI: 10.7551/mitpress/11301.001.0001.
 
- Challa, S, Koks D. Bayesian and  Dempster-Shafer fusion. Sadhana 2004; 29: 145-176. DOI: 10.1007/BF02703729. 
 
- Meyer SL. Data analysis for  scientists and engineers. Peer Management Consultants Ltd; 1992. ISBN:  978-0-9635027-0-4. 
 
- Hall DL.  Mathematical techniques in multisensor data fusion. Artech Print on Demand;  2004. ISBN: 978-1-58053-335-5.
 
- Gros  XE. NDT data fusion. London: U.K.: Arnold;  1997. ISBN: 978-0340676486.
 
- Gros  XE. Applications of NDT data fusion. New    York: Springer; 2001. ISBN: 978-0-7923-7412-1. 
 
- Dromigny  A, Zhu YM. Improving the dynamic range of real-time X-ray imaging systems via  Bayesian fusion. J Nondestr Eval 1997; 16: 147-160. DOI:  10.1023/A:1022606310811
 
- Aleshin  NP, Skrynnikov SV, Krysko NV, Shchipakov NA, Kusy AG. Approaches to weld  quality assurance in gas pipelines based on an integrated analysis of data  obtained by various non-destructive test methods [In Russian]. GAS Industry of  Russia 2021; S3(823): 28-32.
 
- Aleshin NP, Krysko NV, Kusyy AG,  Skrynnikov SV, Mogilner LY. Investigating the detectability of surface  volumetric defects in ultrasonic testing with the use of rayleigh waves  generated by an electromagnetic-acoustic transducer [In Russian]. Russian  Journal of Nondestructive Testing 2021; 57 (5): 361-368. DOI:  10.31857/S0130308221050031.
 
- Aleshin NP, Krysko NV, Skrynnikov SV, Kusyy AG. Studying  detectability of plane surface defects by ultrasonic method using rayleigh waves [In Russian]. Russian  Journal of Nondestructive Testing 2021; 57 (6): 446-454. DOI:  10.31857/S0130308221060038.
 
- SONAFLEX multipurpose test electronics unit. Source: <https://nordinkraft.de/sonaflex/>.
 
- Shubochkin AE. Development and current state of the eddy current  method of non-destructive testing: monograph [In Russian]. Moscow: "Spectrum" Publishing  house; 2014. ISBN: 978-5-4442-0075-9.
 
- Wright M. Eddy current testing technology. Waterloo: Eclipce Scientific; 2015. ISBN:  978-0-9917095-6-4.
 
- Barker TB, Milivojevich A.  Quality by experimental design. CRC Press; 2016. ISBN: 9781032098050. 
 
- Aleshin NP, Krysko   NV, Kirikov AV. Development of a  flaw detector robot combining inspection methods with the use of digital  technologies [In Russian]. Proc XIII All-Russian Conf on     Testing and Research  of the Properties of Materials "TestMat" 2021: 144-156.
 
- Murphy KP. Machine learning: A probabilistic perspective. MIT Press  Publisher; 2012. ISBN: 978-0262018029.
 
- Chen Q, Whitbrook A, Aickelin U, Roadknight C. Data classification  using the Dempster-Shafer method. J Exp Theor Artif Intell 2014; 26(4):  493-517. DOI: 10.1080/0952813X.2014.886301.     
    
- Powers DMW. Evaluation: From precision, recall and  f-measure to ROC, informedness, markedness & correlation. J Mach Learn Res  2011; 2(1): 37-63.
      
      
    
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20