(47-2) 07 * << * >> * Russian * English * Content * All Issues

Determining the error in measuring the spherical concave mirror radius of curvature with a laser rangefinder
A.A. Sakharov 1, I.V. Zhivotovsky 1, V.E. Karasik 1, A.A. Patrikeeva 1

Bauman Moscow State Technical University,
105005, Moscow, Russia, 2nd Baumanskaya st., 5, building 1

 PDF, 1504 kB

DOI: 10.18287/2412-6179-CO-1197

Pages: 246-250.

Full text of article: Russian language.

Abstract:
An instrument and technique for assessing errors of measuring optical surface radius of curvature with a laser rangefinder are presented. Errors of optical instrument alignment with a wave-front sensor are shown to influence the accuracy of measuring the mirror radius. Errors of the rangefinder-aided technique for measuring the surface radius are estimated. A computer analysis shows that the developed scheme of misalignment measurement allows a relative error of 0.02 – 0.3 % to be attained for mirrors ranging in radius from 1 m to 10 m. The choice of the accuracy characteristics of the rangefinders used for measuring the optical surface radius of curvature is justified.

Keywords:
measurement error, spherical mirror, Schack-Hartmann sensor, wavefront sensor, radius of curvature, laser rangefinder, range measurement, misalignment calculation.

Citation:
Sakharov AA, Zhivotovsky IV, Karasik VE, Patrikeeva AA. Determining the error in measuring the spherical concave mirror radius of curvature with a laser rangefinder. Computer Optics 2023; 47(2): 246-250. DOI: 10.18287/2412-6179-CO-1197.

References:

  1. Baryshnikov NV, Denisov DG, Karasik VE, Kudryashov AV, Nikitin AN, Sakharov AA. High-precision method for control of curvature radii of optical surfaces [In Russian]. Izvestia Vysshih Uchebnyh Zavedenii: Priborostroenie 2016; 59(12): 1034-1042.
  2. Nikitin A, Sheldakova J, Kudryashov A, et al. Hartmannometer versus Fizeau Interferometer: advantages and drawbacks. Proc SPIE 2015; 9369: 936905. DOI: 10.1117/12.2085263.
  3. Nikitin A, Sheldakova J, Kudryashov A, et al. A device based on the Shack-Hartmann wave front sensor for testing wide aperture optics. Proc SPIE 2016; 9754: 97540K. DOI: 10.1117/12.221928.
  4. Southwell W. Wave-front estimation from wave-front slope measurements. J Opt Soc Am 1980; 70(8): 998-1006.
  5. Nikitin A, Baryshnikov N, Denisov D, et al. Comparative analysis of methods and optical-electronic equipment to control the shape parameters of spherical mirrors. Proc SPIE 2018; 10539: 105390Z. DOI: 10.1117/12.2297078.
  6. Artzner G. Aspherical wavefront measurements: Shack-Hartmann numerical and practical experiments. Pure Appl Opt 1998; 7(3): 435. DOI: 10.1088/0963-9659/7/3/005.
  7. Sakharov AA, Piskunov TS, Baryshnikov NV, Zhivotovskii IV, Mukhina EE, Vyazovykh MV. Investigation of the possibility of measuring the radius of mirrors with instruments equipped with wavefront sensors. Optics and Spectroscopy 2019; 127(4): 647-655.
  8. Neal DR, Copland RJ, Neal DA, Topa DM, Riera P. Measurement of lens focal length using multi-curvature analysis of Shack-Hartmann wavefront data. Proc SPIE 2004; 5523: 243-255.
  9. Baryshnikov NV, Denisov DG, Zhivotovskij IV, Karasik VE, Mukhina EE, Sakharov AA, Sokolovskij
    VA. Method for determining radius of curvature of concave optical spherical surface with central axial hole by optical ranging method. Pat RF of Invent N 2695085 of July 19, 2019.
  10. Trubitsina EV, Zhivotovsky IV, Sakharov AA. Adjustment of device with a wavefront sensor using accuracy characteristics of the sensor [In Russian]. Kontenant 2019; 3: 51-63.
  11. Leica Disto products Wavemaster. Source: <https://leica-geosystems.com/products/disto-and-leica-lino/leica-disto>.
  12. ShaH Wavefront sensors. Source: <http://visionica.ru/shah.htm>.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20