(47-2) 13 * << * >> * Russian * English * Content * All Issues
  
Spectral reflectance analysis of abandoned agricultural lands in the Central Russian forest-steppe using Sentinel-2 satellite data
  E.A. Terekhin 1
1 Belgorod State University, 308015, Russia, Belgorod, Pobedy str., 85
 PDF, 915 kB
  PDF, 915 kB
DOI: 10.18287/2412-6179-CO-1160
Pages: 306-313.
Full text of article: Russian language.
 
Abstract:
The  article considers the spectral response of post-agrogenic landscapes in the  forest-steppe zone based on Sentinel-2 data. The study was carried out on the  territory of the Central Chernozem region. The type of forest that forms on  abandoned agricultural land has a statistically significant effect on the  spectral response in most Sentinel-2 bands. The reflectance of abandoned lands  with deciduous and coniferous species is statistically significantly different  in most bands. The reflectance of abandoned lands with mixed forests does not  differ statistically significantly from other types of post-agrogenic  landscapes. The reflectance of abandoned lands is inversely related to their  forest cover in most Sentinel-2 bands. The strongest correlation with forest  cover is typical for red (Band 4) and SWIR (Band 11, 12) ranges for all  post-agrogenic landscape types. In the same bands, there are statistically  significant differences between most of forest cover gradations of  post-agrogenic landscapes. The established patterns make it possible to use the  reflectance in the red (Band 4) and SWIR MSI bands (11, 12) to assess the  forest cover of post-agrogenic landscapes.
Keywords:
post-agrogenic landscapes, spectral responce, image processing,  forest-steppe, Sentinel-2.
Citation:
Terekhin EA. Spectral reflectance analysis of abandoned agricultural lands in the Central Russian forest-steppe using Sentinel-2 satellite data. Computer Optics 2023; 47(2): 306-313. DOI: 10.18287/2412-6179-CO-1160.
Acknowledgements:
  The  work was supported by the Russian Science Foundation under grant # 22-27-00291.
References:
  - Goleusov  PV, Lisetskii FN. Soil reproduction in anthropogenic landscapes of  forest-steppe [In Russian]. Moscow: GEOS Publisher; 2009.
- Kurganova IN, Telesnina VM, Lopes de Gerenyu VO,  Lichko VI, Karavanova EI. The dynamics of carbon pools and biological activity  of retic albic podzols in southern taiga during the postagrogenic evolution.  Eurasian Soil Sci 2021; 54(3): 337-351. DOI: 10.1134/S1064229321030108. 
 
- Sorokina OA. Diagnostic parameters of soil formation in gray forest  soils of abandoned fields overgrowing with pine forests in the middle reaches of  the Angara River. Eurasian Soil Sci 2010; 43(8): 867-875. DOI: 10.1134/S1064229310080041. 
 
- Ershov DV, Gavrilyuk EA, Koroleva NV, et al. Natural afforestation  on abandoned agricultural lands during post-soviet period: A comparative  landsat data analysis of bordering regions in Russia and Belarus. Remote Sens  2022; 14(2): 322. DOI: 10.3390/rs14020322.
 
- Ivanov AI, Ivanova ZhA, Sokolov IV. Secondary development of unused  land. Russ Agric Sci 2020; 46(3): 274-278. DOI:  10.3103/S1068367420030076. 
 
- Terekhin EA. Satellite-based estimation of successional processes on  abandoned farmland of south Central Russian Upland [In Russian]. Sovremennye  Problemy Distantsionnogo Zondirovaniya     Zemli iz Kosmosa 2019; 16(6): 180-193.  DOI: 10.21046/2070-7401-2019-16-6-180-193.
 
- Sajb EA, Bezborodova AN, Solov'ev SV, Miller GF, Filimonova DA.  Identification of different age fallows on erosion-hazardous territories of the  south of Western Siberia using geo-information technologies [In Russian]. Sovremennye  Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa  2020; 17(4): 129-136. DOI: 10.21046/2070-7401-2020-17-4-129-136. 
 
- Kumar S, Arya S, Jain K. A SWIR-based vegetation index for change  detection in land cover using multi-temporal Landsat satellite dataset. Int J  Inf Technol 2022; 14(4): 2035-2048. DOI:  10.1007/s41870-021-00797-6. 
 
- Yin H, Brandão A, Buchner J, et al. Monitoring cropland abandonment  with Landsat time series. Remote Sens Environ 2020; 246: 111873. DOI: 10.1016/j.scitotenv.2020.142651. 
 
- Zhu X, Xiao G, Zhang D, Guo L. Mapping abandoned farmland in China  using time series MODIS NDVI. Sci Total Environ 2021; 10(755): 142651. DOI: 10.1016/j.scitotenv.2020.142651. 
 
- He S, Shao  H, Xian W, Zhang S, Zhong J, Qi J. Extraction of abandoned land in hilly areas  based on the spatio-temporal fusion of multi-source remote sensing images.  Remote Sens 2021; 13(19): 3956. DOI: 10.3390/rs13193956.
 
- Estel S, Kuemmerle T, Levers C, Baumann M, Hostert P. Mapping  cropland-use intensity across Europe using MODIS NDVI time series. Environ Res  Lett 2016; 11(2): 024015. DOI:  10.1088/1748-9326/11/2/024015. 
 
- Grădinaru SR, Kienast F, Psomas A. Using multi-seasonal Landsat  imagery for rapid identification of abandoned land in areas affected by urban  sprawl. Ecol Indic 2019; 96: 79-86. DOI:  10.1016/j.ecolind.2017.06.022. 
 
- Zhao L, Yang Q, Zhao Q, Wu J. Assessing the long-term evolution of  abandoned salinized farmland via temporal remote sensing data. Remote Sens  2021; 13(20): 4057. DOI: 10.3390/rs13204057. 
 
- Denisova AYu, Egorova AA, Sergeev VV, Kavelenova LM. Requirements  for multispectral remote sensing data used for the detection of arable land  colonization by tree and shrubbery vegetation. Computer Optics 2019; 43(5): 846-856. DOI:  10.18287/2412-6179-2019-43-5-846-856. 
 
- Koley S, Chockalingam J. Sentinel 1 and Sentinel 2 for cropland  mapping with special emphasis on the usability of textural and vegetation  indices. Adv Space Res 2022; 69(4): 1768-1785. DOI:  10.1016/j.asr.2021.10.020. 
 
- Goga T, Feranec J, Bucha T, Rusnák M, Sačkov I, Barka I, et al. A  review of the application of remote sensing data for abandoned agricultural  land identification with focus on Central and Eastern Europe. Remote Sens 2019;  11(23): 2759. DOI: 10.3390/rs11232759. 
 
- Terekhin EA. Indication of long-term changes in the vegetation of  abandoned agricultural lands for the forest-steppe zone using NDVI time series. Computer Optics 2021; 45(2): 245-252.  DOI: 10.18287/2412-6179-CO-797. 
 
- Shang R, Zhu Z, Zhang J, et al.  Near-real-time monitoring of land disturbance with harmonized Landsats 7–8 and  Sentinel-2 data. Remote Sens Environ 2022; 278: 113073. DOI: 10.1016/j.rse.2022.113073. 
 
- Schwieder  M, Wesemeyer M, Frantz D, et al. Mapping grassland mowing events across Germany  based on combined Sentinel-2 and Landsat 8 time series. Remote Sens Environ  2022; 269: 112795. DOI:  10.1016/j.rse.2021.112795.     
    
- Pahlevan N, Sarkar S, Franz BA, Balasubramanian SV,  He J. Sentinel-2 multispectral instrument (MSI) data processing for aquatic  science applications: Demonstrations and validations. Remote Sens Environ 2017;  201: 47-56. DOI: 10.1016/j.rse.2021.112795.
      
      
    
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20