(47-6) 13 * << * >> * Russian * English * Content * All Issues
  
An algorithm of blood typing using serological plate images
  S.A. Korchagin 1,2, E.E. Zaychenkova 1,3, D.A. Sharapov 1,3, E.I. Ershov 1,3, Y.V. Butorin 1,2,4, Y.Y. Vengerov 1,2,4
  1 The Institute for Information Transmission Problems,
        127051, Moscow, Russia, Bolshoy Karetny per. 19, build 1;
      2 Lomonosov Moscow State University,
        119991, Moscow, Russia, Leninskie Gory 1;
      3 The Moscow Institute of Physics and Technology,
        141701, Russia, Moscow region, Dolgoprudny, Institutskiy per. 9;
      4 LLC «SYNTECO», 142530, Russia, Moscow region, Elektrogorsk, Budionova 1a
  PDF, 3851 kB
DOI: 10.18287/2412-6179-CO-1339
Pages: 958-967.
Full text of article: Russian language.
 
Abstract:
This  paper describes an in vitro medical express diagnostic system designed to determine  the blood group by analyzing the agglutination reaction (gluing of  erythrocytes). The medical staff only needs to take a blood sample, put it on a  serological plate, placing it in a special scanner for the blood group to be  automatically determined. Data digitizing and machine-assisted plate  identification allows two critical tasks to be addressed at once: storing the  analysis results and controlling the human factor. The proposed recognition  algorithm allows  the alveolus boundaries  to be accurately determined and the agglutination degree to be evaluated using  a lightweight convolutional neural network. A unique dataset was collected with  the independent assessment of agglutination degree conducted by medical  experts. The agglutination estimation accuracy on the collected dataset of 3231  alveole was comparable to the accuracy of an average medical expert and equal  to 0.98.
Keywords:
agglutination, blood  typing, classification, Hough transform, deep learning.
Citation:
  Korchagin SA, Zaychenkova EE, Sharapov DA, Ershov EI, Butorin UV, Vengerov UU. An algorithm of blood typing using serological plate images. Computer Optics 2023; 47(6): 958-967. DOI: 10.18287/2412-6179-CO-1339.
References:
  - Harvey W. On the motion of the heart and blood in  animals: A new edition of William Harvey's Exercitatio anatomica de motu cordis  et sanguinis in animalibus. Benton: Resource Publications; 2016. ISBN:  1-4982-3508-5.
 
  - Landsteiner K. Über Agglutinationserscheinungen  normalen menschlichen Blutes. 1901 [Agglutination phenomena of normal human  blood]. Wiener Klinische Wochenschrift; 2001: 768-769.
 
  - Piletsky  SS, Rabinowicz S, Yang Z, Zagar C, Piletska EV, Guerreiro A, Piletsky SA.  Development of molecularly imprinted polymers specific for blood antigens for  application in antibody-free blood typing. ChemComm 2017; 11: 1793-1796. DOI:  10.1039/c6cc08716g.
   
  - Houngkamhang  N, Vongsakulyanon A, Peungthum P, Sudprasert K, Kitpoka P, Kunakorn M,  Srikhirin T. ABO blood-typing using an antibody array technique based on  surface plasmon resonance imaging. Sensors 2013; 13(9): 11913-11922. DOI:  10.3390/s130911913.
   
  - Bouix  O, Ferrera V, Delamaire M, Redersdorff JC, Roubinet F. Erythrocyte-magnetized  technology: an original and innovative method for blood group serology.  Transfusion 2008; 48(9): 1878-1885. DOI: 10.1111/j.1537-2995.2008.01790.x.
   
  - Ching  E. Solid phase red cell adherence assay: A tubeless method for pretransfusion  testing and other applications in transfusion science. Transfus Apher Sci 2012;  46(3): 287-291. DOI: 10.1016/j.transci.2012.03.018.
   
  - Krishnan  NS, Fleetwood P, Higgins RM, Hathaway M, Zehnder D, Mitchell D, Briggs D.  Application of flow cytometry to monitor antibody levels in ABO incompatible  kidney transplantation. Transplantation 2008; 86(3): 474-477. DOI:  10.1097/01.tp.0000332337.86453.42.
   
  - Gorakshakar  A, Gogri H, Ghosh K. Evolution of technology for molecular genotyping in blood  group systems. Indian J Med Res 2017; 146(3): 305. DOI:  10.4103/ijmr.IJMR_914_16.
   
  - Malomgré  W, Neumeister B. Recent and future trends in blood group typing. Anal Bioanal  Chem 2009; 393(5): 1443-1451. DOI: 10.1007/s00216-008-2411-3.
   
  - Lapierre  Y, Rigal D, Adam J, Josef D, Meyer F, Greber S, Drot C. The gel test: a new way  to detect red cell antigen-antibody reactions. Transfusion 1990; 30(2):  109-113. DOI: 10.1046/j.1537-2995.1990.30290162894.x.
   
  - Noiphung  J, Talalak K, Hongwarittorrn I, Pupinyo N, Thirabowonkitphithan P,  Laiwattanapaisal W. A novel paper-based assay for the simultaneous  determination of Rh typing and forward and reverse ABO blood groups. Biosens  Bioelectron 2015; 67: 485-489. DOI: 10.1016/j.bios.2014.09.011.
   
  - Uno  S, Tanaka T, Ashiba H, Fujimaki M, Tanaka M, Hatta Y, Makishima M. Sensitive  typing of reverse ABO blood groups with a waveguide-mode sensor. J Biosci  Bioeng 2018; 126(1): 131-137. DOI: 10.1016/j.jbiosc.2018.01.019.
   
  - Heucke  UW, Cobet U. Blood group typing by ultrasound backscattering–Quantitative  measurements of agglutinates and their shear-dependent behavior. Instrum Sci  Technol 2000; 28(4): 311-321. DOI: 10.1081/ci-100100980.
   
  - Doubrovski  VA, Dolmashkin AA. Human blood group typing based on digital photographs of RBC  agglutination process. Opt Spectrosc 2010; 109(2): 263-267. DOI:  10.1134/s0030400x10080187.
   
  - Sturgeon  P. Automation: its introduction to the field of blood group serology.  Immunohematology Journal of Blood Group Serology and Education 2001; 17(4):  100-105. DOI: 10.21307/immunohematology-2019-561.
   
  - Lifshitz  MS, De Cresce RP. The Olympus PK 7100 automated pretransfusion blood testing  system. Lab Med 1987; 18(3): 182-183. DOI: 10.1093/labmed/18.3.182.
   
  - Novaretti  MCZ, Navarro SP, Dorlhiac-Liacer PE, Chamone DDAF. K phenotyping using a  PK-7200 automated analyzer. Immunohematology 1998; 14(1): 22-25. DOI:  10.21307/immunohematology-2019-649.
   
  - Dada  A, Beck D, Schmitz G. Automation and data processing in blood banking using the  Ortho AutoVue® Innova System. Transfus Med Hemother 2007; 34(5): 341-346. DOI:  10.1159/000106558.
   
  - Wittmann  G, Frank J, Schramm W, Spannagl M. Automation and data processing with the  Immucor Galileo® system in a university blood bank. Transfus Med Hemother 2007;  34(5): 347-352. DOI: 10.1159/000107936.
   
  - Shin  SY, Kwon KC, Koo SH, Park JW, Ko CS, Song JH, Sung JY. Evaluation of two  automated instruments for pre-transfusion testing: AutoVue Innova and Techno  TwinStation. The Korean Journal of Laboratory Medicine 2008; 28(3): 214-420.  DOI: 10.3343/kjlm.2008.28.3.214.
   
  - Narayanan  S, Galloway L, Nonoyama A, Leparc GF, Garcia-Rubio LH, Potter RL. UV-visible  spectrophotometric approach to blood typing II: Phenotyping of subtype A2 and  weak D and whole blood analysis. Transfusion 2002; 42(5): 619-626. DOI: 10.1046/j.1537-2995.2002.00090.x.
   
  - Ramasubramanian  MK, Alexander SP. An integrated fiberoptic–microfluidic device for  agglutination detection and blood typing. Biomed Microdevices 2009; 11(1):  217-229. DOI: 10.1007/s10544-008-9227-y.
   
  - Sheng  N, Liu L, Liu H. Quantitative determination of agglutination based on the  automatic hematology analyzer and the clinical significance of the  erythrocyte-specific antibody. Clin Chim Acta 2020; 510: 21-25. DOI:  10.1016/j.cca.2020.06.042.
   
  - Ferraz  A. Automatic system for determination of blood types using image processing  techniques. 2013 IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG) 2013:  1-6. DOI: 10.1109/enbeng.2013.6518441.
   
  - HasanTalukder  M, Reza M, Begum M, Islam R, Hasan M. Improvement of accuracy of human blood  groups determination using image processing techniques. Int J Adv Res Comput  Commun Eng 2015; 4(10): 411-412. DOI: 10.17148/ijarcce.2015.41090.
   
  - Dong  Y, Fu W, Zhou Z, Chen N, Liu M, Chen S. ABO blood group detection based on  image processing technology. 2017 2nd Int Conf on Image, Vision and Computing  (ICIVC) 2017: 655-659. DOI: 10.1109/icivc.2017.7984637.
   
  - Rahman  S, Rahman A, Khan FA, Shahjahan SB, Nahar K. Blood group detection using image  processing techniques. Doctoral dissertation. Bangladesh: BRAC University; 2017.
   
  - Sahastrabuddhe  AP, Ajij SD. Blood group detection and RBC, WBC counting: an image processing  approach. Int J Comput Sci Eng 2016; 5(10): 18635-18639. DOI:  10.18535/IJECS/V5I10.49.
   
  - Yamin  A, Imran F, Akbar U, Tanvir SH. Image processing based detection &  classification of blood group using color images. 2017 Int Conf on  Communication, Computing and Digital Systems (C-CODE) 2017: 293-298. DOI:  10.1109/c-code.2017.7918945.
   
  - Atici  H, Koçer HE, Kader S. Determination of blood group by image processing using digital  images. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi 2020; 7(2):  649-659. DOI: 10.35193/bseufbd.646847.
   
  - Anuradha  T. Human blood type classification by ROI based pixel segmentation and neural  network. Des Eng 2021; 23(8): 9828-9836. DOI: 10.26438/ijcse/v7i7.230234.
   
  - Fathima  SMN. Classification of blood types by microscope color images. Int J Mach Learn  Comput 2013; 3(4): 376. DOI: 10.7763/ijmlc.2013.v3.342.
   
  - Rathod  A, Pathan A. Determination and classification of human blood types using SIFT transform  and SVM classifier. Int J Adv Res Electr Electron Instrum Eng 2016; 5:  8467-8473. DOI: 10.15662/IJAREEIE.2016.0511031.
   
  - Ershov  EI, Terekhin AP, Nikolaev DP. Generalization of the fast hough transform for  three-dimensional images. J Commun Technol Electron 2018; 63(6): 626-636. DOI:  10.1134/s1064226918060074.
   
  - Canny  J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach  Intell 1986; 6: 679-698. DOI: 10.1016/b978-0-08-051581-6.50024-6.
   
  - Fisher  R, Perkins S, Walker A, Wolfart E. Hypermedia image processing reference.  Hoboken: John Wiley & Sons Ltd; 1996: 118-130. ISBN: 0-4719-6243-0.
   
  - Nixon  M, Aguado A. Feature extraction and image processing for computer vision.  Amsterdam: Elsevier Ltd; 2019. ISBN: 0-1281-4976-0.
   
  - Bradski  G, Kaehler A. Learning OpenCV: Computer vision with the OpenCV library.  Sebastopol: O'Reilly Media Inc; 2008. ISBN: 0-5965-1613-4.
   
  - Figueira  JP. Fast discrete Frechet distance. 2020. Source:  <https://towardsdatascience.com/fast-discrete-fr%C3%A9chet-distance-d6b422a8fb77>. 
 
  - Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv  Preprint. 2014. Source:   <https://arxiv.org/abs/1412.6980>.
 
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20