(49-3) 11 * << * >> * Russian * English * Content * All Issues
  
An ensemble method for cloud mask calculation based on data from the AHI instrument onboard the Himawari-8/9 satellite using convolutional neural networks
 A.I. Andreev 1,2, S.I. Malkovsky 1, M.O. Kuchma 1,2, Y.A. Shamilova 2
 1 Computing Center of the Far Eastern Branch of the Russian Academy of Sciences,
     Kim Yu Chena Str. 65, Khabarovsk, 680000, Russia;
     2 Far-Eastern Center of the Federal State Budgetary Institution "State Research Center of Space Hydrometeorology 'Planeta'",
  Lenina 18, Khabarovsk, 680000, Russia
 PDF, 1586 kB
  PDF, 1586 kB
DOI: 10.18287/2412-6179-CO-1525
Pages: 451-460.
Full text of article: Russian language.
 
Abstract:
The  paper explores a method for calculating a cloud mask based on the use of  several convolutional neural network classifiers trained for various  observation conditions using a bootstrapping method. An algorithm developed on  the basis of this method makes it possible to detect clouds in images obtained  from the Advanced Himawari Imager (AHI) instrument onboard the Himawari-8/9  satellite, regardless of the Sun illumination conditions of the territory of  the Asia-Pacific region under surveillance in the warm and cold seasons. The  accuracy of the obtained results is assessed using a cloud mask provided by the  US National Oceanic and Atmospheric Administration, NOAA. Numerical assessment  and visual analysis show high accuracy of the developed algorithm, which is  higher than the earlier classifier version offered by the present authors. When  compared with the NOAA masks, the average F1-measure ranges from 75% at  twilight to 85% during the daytime.
Keywords:
AHI,  Himawari, clouds, mask, neural network, bootstrapping. ensemble of classifiers.
Citation:
  Andreev AI, Malkovsky  SI, Kuchma MO,  Shamilova YA. An ensemble method for cloud mask calculation based on data from  the AHI instrument onboard the Himawari-8/9 satellite using convolutional  neural networks. Computer Optics 2025; 49(3): 451-460. DOI: 10.18287/2412-6179-CO-1525.
Acknowledgements:
  The research was financially supported by the Russian Science Foundation  under grant # 23-77-00011 (https://rscf.ru/en/project/23-77-00011/).
References:
  - Guide to instruments and  methods of observations: Volume IV – Space-based observations. Geneva: World Meteorological  Organization; 2021. Source:  <https://library.wmo.int/ru/records/item/68662-guide-to-instruments-and-methods-of-observation?language_id=28&back=&offset=628>.
 
- Mahajan S, Fataniya B.  Cloud detection methodologies: Variants and development – A review. Complex  Intell Syst 2020; 6(2): 251-261. DOI: 10.1007/s40747-019-00128-0.
 
- Li Z, Shen H, Weng Q, Zhang Y, Dou  P, Zhang L. Cloud and cloud shadow detection for optical satellite imagery:  Features, algorithms, validation, and prospects. ISPRS J Photogramm Remote Sens  2022; 188: 89-108. DOI: 10.1016/j.isprsjprs.2022.03.020. 
 
- Sun L, Wei J, Wang J, Mi X, Guo Y,  Lv Y, Yang Y, Gan P, Zhou X, Jia C, Tian X. A universal dynamic threshold cloud  detection algorithm (UDTCDA) supported by a prior surface reflectance database. J Geophys Res Atmos  2016; 121(12): 7172-7196. DOI: 10.1002/2015JD024722. 
 
- Volkova EV. Comparison of two  threshold methods for cloud cover parameters estimation using SEVIRI/Meteosat-9  data [In Russian]. Sovremmennye Problemy Distantsionnogo Zondirovaniya Zemli iz  Kosmosa 2011; 8(4): 54-60. 
 
- Zhuge X, Zou X. Test of a modified  infrared-only ABI cloud mask algorithm for AHI radiance observations. J Appl  Meteorol Climatol 2016; 55(11): 2529-2546. DOI: 10.1175/JAMC-D-16-0254.1. 
 
- Imai T, Yoshida R. Algorithm  theoretical basis for Himawari-8 cloud mask product. Meteorological Satellite Center Technical Note 2016; 61: 1-17. 
 
- Lyapustin A, Wang Y, Frey R. An  automatic cloud mask algorithm based on time series of MODIS measurements. J Geophys Res Atmos 2008; 113(D16). DOI: 10.1029/2007JD009641. Source: <https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007JD009641>.
 
- Derrien M, Le Gléau H. Improvement  of cloud detection near sunrise and sunset by temporal-differencing and region-growing  techniques with real-time SEVIRI. Int J Remote Sens 2010; 31(7): 1765-1780.  DOI: 10.1080/01431160902926632. 
 
- Mateo-Garcia G, Gomez-Chova L,  Camps-Valls G. Convolutional neural networks for multispectral image cloud  masking. 2017 IEEE Int Geoscience and Remote Sensing Symposium (IGARSS) 2017:  2255-2258. DOI: 10.1109/IGARSS.2017.8127438. 
 
- Bloshchinskiy VD, Kuchma MO, Andreev  AI, Sorokin AA. Snow and cloud detection using a convolutional neural network  and low-resolution data from the Electro-L No. 2 Satellite. J Appl Remote Sens  2020; 14(3): 034506. DOI: 10.1117/1.JRS.14.034506. 
 
- Chu X, Ilyas IF, Krishnan S. Data  cleaning: Overview and emerging challenges. Proc 2016 Int Conf on Management of  Data 2016: 2201-2206. DOI: 10.1145/2882903.2912574. 
 
- Kilpatrick KA, Podesta G, Williams  E, Walsh S, Minnett PJ. Alternating decision trees for cloud masking in MODIS  and VIIRS NASA sea surface temperature products. J Atmos Oceanic Tech 2019; 36(3): 387-407. DOI:  10.1175/JTECH-D-18-0103.1. 
 
- Liu C, Yang S, Di D, Yang Y, Zhou C,  Hu X, Sohn BJ. A machine learning-based cloud detection algorithm for the  Himawari-8 spectral image. Adv Atmos Sci 2022; 39(12): 1994-2007. DOI:  10.1007/s00376-021-0366-x. 
 
- Tan Z, Liu C, Ma S, Wang X, Shang J,  Wang J, Ai W, Yan W. Detecting multilayer clouds from the geostationary advanced  Himawari imager using machine learning techniques. IEEE Trans Geosci Remote  Sens 2021; 60: 4103112. DOI: 10.1109/TGRS.2021.3087714. 
 
- Breiman L. Random forests. Mach  Learn 2001; 45(1): 5-32. DOI: 10.1023/A:1010933404324. 
 
- Nzuva S, Nderu L. The superiority of  the ensemble classification methods: A comprehensive review. Journal of Information  Engineering & Applications 2019; 9(5): 43-53. DOI: 10.7176/JIEA/9-5-05.
 
- Phung VH, Rhee EJ. A high-accuracy  model average ensemble of convolutional neural networks for classification of  cloud image patches on small datasets. Appl Sci 2019; 9(21): 4500. DOI: 10.3390/app9214500.
 
- Drönner J, Korfhage N, Egli Sm  Mühling M, Thies B, Bendix J, Freisleben B, Seeger B. Fast cloud segmentation  using convolutional neural networks. Remote Sens 2018; 10(11): 1782. DOI:  10.3390/rs10111782. 
 
- Zhang J, et al. Ensemble  meteorological cloud classification meets internet of dependable and  controllable things. IEEE Internet Things J 2020; 8(5): 3323-3330. DOI: 10.1109/JIOT.2020.3043289.
 
- Bhagwat RU, Shankar BU. A novel  multilabel classification of remote sensing images using XGBoost. 2019 IEEE 5th  Int Conf for Convergence in Technology (I2CT) 2019: 1-5. DOI:  10.1109/I2CT45611.2019.9033768.
 
- Jafarzadeh H, et al. Bagging and  boosting ensemble classifiers for classification of multispectral,  hyperspectral and PolSAR data: a comparative evaluation. Remote Sens 2021;  13(21): 4405. DOI:  10.3390/rs13214405.
 
- Shao Z, Ahmad MN, Javed A.  Comparison of random forest and XGBoost classifiers using integrated optical  and SAR features for mapping urban impervious surface. Remote Sens 2024; 16(4): 665.  DOI: 10.3390/rs16040665.
 
- Kuchma MO, Voronin BB. Creating a  training sample for a convolutional neural network in the task of thematic  processing of satellite images [In Russian]. In Book: Voronin VV, et al., eds.  Information technologies of the 21st century. Habarovsk: Pacific National University Publisher; 2020: 187-191. 
 
- Andreev AI, Shamilova YA. Cloud detection from the Himawari-8  Satellite data using a convolutional neural network. Izvestiya, Atmospheric and  Oceanic Physics 2021; 57(9): 1162-1170. DOI: 10.1134/S0001433821090401. 
 
- Ackerman SA, Strabala KI, Menzel WP,  Frey RA, Moeller CC, Gumley LE. Discriminating clear sky from clouds with  MODIS. J Geophys Res Atmos 1998; 103(D24): 32141-32157. DOI:  10.1029/1998JD200032. 
 
- Liu Y, Key JR, Frey RA, Ackerman SA,  Menzel WP. Nighttime polar cloud detection with MODIS. Remote Sens Environ  2004; 92(2): 181-194. DOI: 10.1016/j.rse.2004.06.004. 
 
- Reguiegue M, Chouireb F. Automatic  day time cloud detection over land and sea from MSG SEVIRI images using three  features and two artificial intelligence approaches. Signal Image Video Process  2018; 12(1): 189-196. DOI: 10.1007/s11760-017-1145-0. 
 
- Shang H, Chen L, Letu H, Zhao M, Li S,  Bao S. Development of a daytime cloud and haze detection algorithm for  Himawari-8 satellite measurements over central and eastern China. J Geophys Res  Atmos 2017; 122(6): 3528-3543. DOI: 10.1002/2016JD025659. 
 
- Zhang CW, Zhuge XY, Yu F.  Development of a high spatiotemporal resolution cloud-type classification  approach using Himawari-8 and CloudSat. Int J Remote Sens 2019; 40: 6464-6481.  DOI: 10.1080/01431161.2019.1594438. 
 
- He Q. Night-time cloud detection for  FY-3A/VIRR using multispectral thresholds. Int J Remote Sens 2013; 34(8):  2876-2887. DOI: 10.1080/01431161.2012.755275. 
 
- Frey RA, Ackerman SA, Liu Y,  Strabala KI, Zhang H, Key JR, Wang X. Cloud detection with MODIS. Part I:  Improvements in the MODIS cloud mask for collection 5. J Atmos Oceanic Tech  2008; 25(7): 1057-1072. DOI: 10.1175/2008JTECHA1052.1. 
 
- Hocking J, Francis PN, Saunders R.  Cloud detection in Meteosat second generation imagery at the Met Office.  Meteorol Appl 2011; 18(3): 307-323. DOI: 10.1002/met.239. 
 
- Heidinger A, Straka W. Algorithm  theoretical basis document NOAA Enterprise Cloud Mask. NOAA NESDIS Center for Satellite Applications and Research 2020: 73. 
 
- Lee H, Song J. Introduction to  convolutional neural network using Keras; an understanding from a statistician.  Commun Stat Appl Methods 2019; 26(6): 591-610. DOI:  10.29220/CSAM.2019.26.6.591. 
 
- Breiman L. Bagging predictors. Mach  Learn 1996; 24(2): 123-140. DOI: 10.1007/BF00058655. 
 
- Breiman L. Heuristics of instability  and stabilization in model selection. The Annals of Statistics 1996; 24(6): 2350-2383.  DOI: 10.1214/aos/1032181158. 
- Kingma DP, Ba J. Adam: A method for stochastic  optimization. arXiv Preprint. 2014. Source:  <https://arxiv.org/abs/1412.6980>. DOI: 10.48550/arXiv.1412.6980.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20