(49-3) 16 * << * >> * Russian * English * Content * All Issues
  
Development and assessment of Leaf Area Index of Russia's vegetation cover based on multi-angular observations by KMSS (Meteor-M) and neural network inversion of PROSAIL model
 D.E. Plotnikov 1, Z. Zhou 2, P.A. Kolbudaev 1, E.A. Loupian 1, A.M. Matveev 1, M.V. Zimin 2, B.S. Zhukov 1, T.V. Kondratieva 1, S.V. Lebedev 3
 1 Space Research Institute of the Russian Academy of Sciences,
     Profsoyuznaya Str. 84/32, Moscow, 117997, Russia;
     2 XMoscow State University,
     Leninskie gory 1, Moscow, 119991, Russia;
     3 Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences,
  9 Yanvarya Str. 29, Orenburg, 460000, Russia
 PDF, 3738 kB
  PDF, 3738 kB
DOI: 10.18287/2412-6179-CO-1621
Pages: 504-516.
Full text of article: Russian language.
 
Abstract:
The paper describes, for  the first time, a methodology for Leaf Area Index (LAI) retrieval using a  remote sensing device KMSS mounted onboard the Russian satellite Meteor-M with  a 60-m spatial resolution. The method is based on the inversion of a PROSAIL  radiative transfer model which ingests boundary conditions of the parameters,  KMSS surface reflectance data and scene geometrical properties, including  observation and illumination conditions. A parameterized and trained fully  connected neural network was used as an inversion algorithm. When creating the  training sample set, a complete orthogonal plan was used to account for all  interactions between input parameters of the model, as well considering their  distributions and co-distributions of linked parameters based on a  meta-analysis of literature. In this work, the effectiveness of two different  geometrical observation schemes was investigated – the classical nadir and the  multi-angular, with angles ±8.67°. A reasonably high model  accuracy of LAI retrieval was reached: RMSE=1,  MAE=0.705 and R2=0.722. Based on the developed  method, KMSS-2-based and 60-meters-resolution LAI product was produced and  tested over the territory   of Russia using 2022-year  data. A pixel-wise comparison of KMSS-2 LAI with NASA MODIS LAI product  (MCD15A3H) for the snow-free period of the year 2022 also indicate that the  proposed product has sufficiently high-level characteristics: RMSE=1.065,  MAE=0.669 and R2=0.668. The method for LAI  retrieval based on KMSS data developed within this study will increase the  efficiency and operability of applications related to detailed environmental  monitoring based on remote sensing data from Russian satellite systems.
Keywords:
LAI, KMSS, PROSAIL,  Meteor-M, multi-angular observations, neural network inversion, orthogonal  plan, vegetation cover, biophysical parameters.
Citation:
  Plotnikov DE, Zhou Z,  Kolbudaev PA, Loupian EA, Matveev AM, Zimin MV, Zhukov BS, Kondratieva TV,  Lebedev SV. Development and assessment of Leaf Area Index of Russia's  vegetation cover based on multi-angular observations by KMSS (Meteor-M) and  neural network inversion of PROSAIL model. Computer Optics 2025; 49(3): 504-516. DOI: 10.18287/2412-6179-CO-1621.
Acknowledgements:
  This research was  funded by Russian Science Foundation,  project No. 23-27-00412 (https://rscf.ru/project/23-27-00412/).
References:
  - Weiss M, Jacob F,  Duveiller G. Remote sensing for agricultural applications: A meta-review.  Remote Sens Environ 2020; 236(5): 111402. DOI: 10.1016/j.rse.2019.111402.
 
- Waldner F, Schucknecht  A, Lesiv M, et al. Conflation of expert and crowd reference data to validate  global binary thematic maps. Remote Sens Environ 2019; 221: 235-246. DOI:  10.1016/j.rse.2018.10.039.
 
- Shabanov  NV, Bartalev SA, Eroshenko FV, Plotnikov   DE. Development of capabilities  for remote sensing estimate of Leaf Area Index from MODIS data [In Russian]. Sovremennye  problemy distantsionnogo zondirovaniya Zemli iz kosmosa 2018; 15(4): 166-178.  DOI: 10.21046/2070-7401-2018-15-4-166-178.
 
- GCOS,  WMO. Systematic observation requirements for satellite-based data products for  climate – 2011 update. GCOS, WMO: Geneva,   Switzerland; 2011.
 
- Wang L, Good SP,  Caylor KK. Global synthesis of vegetation control on evapotranspiration  partitioning. Geophys Res Lett 2014; 41(19): 6753-6757. DOI:  10.1002/2014GL061439.
 
- Boussetta  S, Balsamo G, Beljaars A, Kral T, Jarlan L. Impact of a satellite-derived leaf  area index monthly climatology in a global numerical weather prediction model. Int  J Remote Sens 2013; 34(9-10): 3520-3542. DOI: 10.1080/01431161.2012.716543.
 
- Fuster B,  Sánchez-Zapero J, Camacho F, García-Santos V, Verger A, Lacaze R, Weiss M,  Baret F, Smets B. Quality assessment of PROBA-V LAI, fAPAR and fCOVER collection  300 m  products of copernicus global land service. Remote Sens 2020; 12(6): 1017. DOI:  10.3390/rs12061017.
 
- Yang  W, Shabanov NV, Huang D, Wang W, Dickinson RE, Nemani RR, Knyazikhin Y, Myneni RB.  Analysis of leaf area index products from combination of MODIS Terra and Aqua  data. Remote Sens Environ 2006; 104(3): 297-312. DOI:  10.1016/j.rse.2006.04.016.
 
- Bacour  C, Baret F, Béal D, Weiss M, Pavageau K. Neural network estimation of LAI, fAPAR, fCover and LAI× Cab, from top of canopy MERIS reflectance data:  Principles and validation. Remote Sens Environ 2006; 105(4): 313-325. DOI:  10.1016/j.rse.2006.07.014.
 
- Polyanskiy  IV, Zhukov BS, Kondratieva TV, Prokhorova SA, Smetanin PS. Medium-resolution  multispectral satellite imaging system for hygrometeorological spacecraft [In  Russian]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa  2019; 16(6): 83-92. DOI: 10.21046/2070-7401-2019-16-6-83-92.
 
- Plotnikov  DE, Kolbudaev PA, Matveev AM, et al. Accuracy assessment of atmospheric  correction of KMSS-2 Meteor-M #2.2 Data over Northern Eurasia. Remote Sens 2023;  15(18): 4395. DOI: 10.3390/rs15184395.
 
- Plotnikov  DE, Kolbudaev PA, Loupian EA. An automatic method for subpixel registration of  KMSS-M imagery based on coarse-resolution actualized reference. Computer Optics  2022; 46(5): 818-827. DOI: 10.18287/2412-6179-CO-1098.
 
- Plotnikov  DE, Loupian EA, Kolbudaev PA, et al. Daily surface reflectance reconstruction  using LOWESS on the example of various satellite systems. VIII Int Conf on Information  Technology and Nanotechnology (ITNT) 2022: 1-5. DOI:  10.1109/ITNT55410.2022.9848630.
 
- Kuusk  A. Canopy radiative transfer modeling. In Book: Liang S, ed. Compregensive remote  sensing, Volume 3. Oxford:  Elsevier; 2018: 9-22. DOI: 10.1016/B978-0-12-409548-9.10534-2.
 
- Baret  F, Buis S. Estimating canopy characteristics from remote sensing observations:  Review of methods and associated problems. In Book: Liang S, ed. Advances in  land remote sensing. System, modeling, inversion and application. Springer  Science+Business Media BV;  2008: 173-201. DOI: 10.1007/978-1-4020-6450-0_7.
 
- Goel NS. Inversion of canopy reflectance  models for estimation of biophysical parameters from reflectance data. In Book:  Asrar G, ed. Theory and applications of optical remote sensing. New York: Wiley; 1989:  205-251.
 
- Berger  K, Atzberger C, Danner M, D’Urso G, Mauser W, Vuolo F, Hank T. Evaluation of  the PROSAIL model capabilities for future hyperspectral model environments: A  review study. Remote Sens 2018; 10(1): 85. DOI: 10.3390/rs10010085.
 
- Bacour  C, Jacquemoud S, Leroy M, et al. Reliability of the estimation of vegetation  characteristics by inversion of three canopy reflectance models on airborne  POLDER data. Agronomie 2002; 22(6): 555-565. DOI: 10.1051/agro:2002039.
 
- Li  L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A. Hyperband: A novel  bandit-based approach to hyperparameter optimization. J Mach Learn Res 2018; 18(1):  6765-6816.
 
- Feret  JB, François C, Asner GP, et al. PROSPECT-4 and 5: Advances in the leaf optical  properties model separating photosynthetic pigments. Remote Sens Environ 2008; 112(6):  3030-3043. DOI: 10.1016/j.rse.2008.02.012.
 
- Féret  JB, Gitelson AA, Noble SD, Jacquemoud S. PROSPECT-D: Towards modeling leaf  optical properties through a complete lifecycle. Remote Sens Environ 2017; 193:  204-215. DOI: 10.1016/j.rse.2017.03.004.
 
- Scurlock  JMO. Worldwide historical estimates of leaf area index, 1932-2000. ORNL/TM-2001/268.  Oak Ridge National  Lab; 2002.
 
- Weiss  M, Baret F, Jay S. S2ToolBox Level 2 products LAI, FAPAR, FCOVER. Research  Report. EMMAH-CAPTE, INRAE Avignon;  2020.
 
- Masson  V, Champeaux JL, Chauvin F, Meriguet C, Lacaze R. A global database of land  surface parameters at 1-km resolution in meteorological and climate models. J Clim  2003; 16(9): 1261-1282. DOI:  10.1175/1520-0442(2003)16<1261:AGDOLS>2.0.CO;2.
 
- Baret  F, Morissette JT, Fernandes RA, et al. Evaluation of the representativeness of  networks of sites for the global validation and intercomparison of land  biophysical products: Proposition of the CEOS-BELMANIP. IEEE Trans Geosci  Remote Sens 2006; 44(7): 1794-1803. DOI: 10.1109/TGRS.2006.876030.
 
- Weiss  M, Baret F, Smith GJ, Jonckheere I, Coppin P. Review of methods for in situ  leaf area index (LAI) determination: Part II. Estimation of LAI, errors and  sampling. Agric For Meteorol 2004; 121(1-2): 37-53. DOI:  10.1016/j.agrformet.2003.08.001.
 
- Garrigues  S, Shabanov NV, Swanson K, Morisette JT, Baret F, Myneni RB. Intercomparison  and sensitivity analysis of Leaf Area Index retrievals from LAI-2000, AccuPAR,  and digital hemispherical photography over croplands. Agric For Meteorol 2008; 148(8-9):  1193-1209. DOI: 10.1016/j.agrformet.2008.02.014.
 
- Weiss  M, Baret F, Leroy M, Hautecœur O, Bacour C, Prevol L, Bruguier N. Validation of  neural net techniques to estimate canopy biophysical variables from remote sensing  data. Agronomie 2002; 22(6): 547-554. DOI: 10.1051/agro:2002036.
 
- Liu  W, Baret F, Gu X, Zhang B, Tong Q, Zheng L. Evaluation of methods for soil  surface moisture estimation from reflectance data. Int J Remote Sens 2003; 24(10):  2069-2083. DOI: 10.1080/01431160210163155.
 
- Jacquemoud  S, Baret F, Hanocq JF. Modeling spectral and bidirectional soil reflectance. Remote  Sens Environ 1992; 41(2-3): 123-132. DOI: 10.1016/0034-4257(92)90072-R.
 
- Myneni  R, Knyazikhin Y, Park T. MODIS/Terra+Aqua Leaf Area Index/FPAR 4-Day L4 Global  500m SIN Grid V061 [Data set]. NASA EOSDIS Land  Processes Distributed Active   Archive Center.  2024. Source: <https://catalog.data.gov/dataset/modis-terraaqua-leaf-area-index-fpar-4-day-l4-global-500m-sin-grid-v061-73ff7>.  DOI: 10.5067/MODIS/MCD15A3H.061. 
- Loupian EA, Proshin AA, Bourtsev MA, Balashov IV,  Bartalev SA, Efremov VYu, Kashnitskiy AV, Mazurov AA, Matveev AM, Sydneva OA,  Sychugov IG, Tolpin VA, Uvarov IA. IKI center for collective use of satellite  data archiving, processing and analysis systems aimed at solving the problems  of environmental study and monitoring [In Russian]. Sovremennye Problemy  Distantsionnogo Zondirovaniya Zemli iz Kosmosa 2015; 12(5): 263-284. DOI:  10.21046/2070-7401-2017-14-7-136-152.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20