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DESIGN OF TWO-MIRROR SYSTEMS
B. E. KINBER and S. N. KAPTSOV

Abstract—Methods are surveyed for the design of mirror systems which transform, within the geometrical
optics approximation, a-primary spherical wave into a wave with specified ray structure (namely flat,
spherical, or with a specific focal line). The existing approaches to this problem are discussed in detail.
Mirror surfaces can be chosen starting from different conditions: (a) the amplitude distribution over the
initial wave front is transformed into a specified amplitude distribution over the front of the doubly
reflected wave; (b) focusing (without aberrations) of two waves from different directions; (c) the polarization
structure of the primary wave is transformed into the specified polarization structure of a doubly reflected
wave. For different formulations, the problem boils down to solving equations in second- or first-order
partial derivatives, and equations in partial derivatives with delayed argument. In degenerate situations
(the flat or the axially symmetric problem), the solution reduces to ordinary differential equations. Boundary
conditions providing unique solutions are considered.

Unlike classically constructed optical devices in the visible range, optical-type devices (antennae)
working in the centimetre and millimetre bands may utilize nonspherical surfaces. This circumstance
is a result of available production technologies, because manufacturing tolerances are determined
in part by the wavelength. The present-day limit of production accuracy of non-spherical surfaces
with linear dimensions of 10-30 m is 0.05 mm, such surfaces being produced by computer controlled
machines. The manufacture of such unusual surfaces in optics opens up novel possibilities. Our
report is devoted to a description of various types of such devices and to a short exposition of
their design principles.

The most important requirement imposed on optical devices is the attainment of maximal
directivity (resolving power). This in turn demands zero aberration, i.e. the satisfaction of a phase
condition. Reducing aberration in a particular direction to zero (equivalent to point focusing at a
finite distance), given that the primary field is a spherical wave, may be achieved by means of a
single-mirror system whose surface is an ellipsoid of revolution. In the special, but practically
important case of focusing at infinity (required of communication, location or other antennae), the
mirror surface must be a paraboloid of revolution. Single mirror antennae are thus adequate in
generating the required phase structure, but clearly cannot cope with regulating the amplitude
structure of secondary wavefronts, or with controlling polarizations. We recall that just to eliminate
surface aberrations the mirror has to be aspheric (though it is in fact a surface of revolution).

Two-mirror antennae have great possibilities. By suitable choice of the two mirror surfaces
different goals may be realized: one can either regulate the amplitude distribution of the focused
field, or eliminate aberration at two focal points (bifocal system).

Let us first discuss how amplitude regulation can be achieved. The simplest solution is obtained for
an axisymmetric system (see Fig. 1). The problem is solved in two stages: first, via energy
considerations, one sets up the correspondence between beams of the primary spherical wave and
the secondary plane wave, i.e. the function r = r(). This correspondence is of course antisymmetric
for the meridional cross-section. Then in the second stage one determines, via the mirror reflection
conditions, the transformed beams formed on the mirrors [1-3]. This type of two-mirror system
significantly reduces energy losses across the mirror edges, and at the same time equalizes the
amplitude distribution (increasing the resolving power) along the plane wavefront. Such systems
are extensively utilized in present-day antenna technology and admit a uniformity value of
distribution of up to 0.9 [4]. The mirror profile is determined by a first-order ordinary differential
equation which can be solved by quadratures [1, 2].

The theory of the synthesis of non-axisymmetric mirrors is considerably more complicated. These
systems allow one to eliminate vignetting of large mirrors by small ones [3, 5, 6]. The transformation
of a spherical into a plane wave at specified amplitude distributions of the primary and secondary
waves is given by the solution of a nonlinear partial differential equation (a Monge-Ampere type
equation) [5]. The theory of such equations has not yet been worked out and the boundary
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Fig. 1.

conditions required to ensure existence and uniqueness of solutions are still the subject of discussion
[7,8].

It is usually assumed that for this transformation one need only demand that a finite segment
T, of the primary front be transformed into a finite segment T, of the doubly reflected wave, such
that the contour I', is transformed into contour I',, without imposing the condition expressing
the correspondence between points of I'; and I',. This requirement was used in [5] as the equivalent
of a boundary condition. However, the inadequacy of such a procedure may be shown by a simple
example. Let T, and T, be circular sections of a plane wave with uniform amplitude distribution.
Two-mirror antennae transforming T, and T into each other may be constructed by three different
methods:

(1) two plane mirrors,
(2) two confocal paraboloids of rotation,
(3) two confocal parabolic cylinders.

All three alternatives satisfy the conditions of the problem, yet each will have different rules for
intercontour point matching. For example, in the third variant the angle of orientation of the
parabolic cylinder is clearly arbitrary. This example demonstrates that the boundary condition
must be given in association with the correspondence rule between points of I'y and T',.

If energy conditions are required to be satisfied only in the mean, rather than strictly (along a
single azimuth coordinate), then the problem reduces to a nonlinear equation in the first-order
partial derivatives [7, 8], whose theory is well established. It leads one into solving a set of five
ordinary differential equations (by the method of characteristics). By modifying somewhat the
method described (while preserving the single-parameter nature of the amplitude transformation),
one of the mirrors may be made into the technically more accessible axisymmetric form. The design
of such a mirror is through the solution of a second-order ordinary differential equation.

Two-mirror antennae can be used to transform not only amplitudes but also polarizations.
However, if the mirror surfaces are smooth, then this type of system will only perform a rotation
of the polarization ellipse, without being able to vary its eccentricity [9]. In order to change the
polarization ellipse’s eccentricity anisotropic (lattice) mirrors must be used. In this case, by regulating
the anisotropy tensor parameters, we can control the shifts of the polarization ellipse, while by
adjusting the anisotropic mirror surfaces we can alter the amplitude distribution at the output of
the system. The presence of anisotropy on both surfaces allows one to moderate the anisotropy
requirement of individual mirrors [10].

Two-mirror systems may also be utilized in aberration-free focusing into two specified directions.
Oddly enough, the mathematical problem of determining the mirror surfaces in this case is simpler
than for the amplitude transformation. The mirror surfaces are determined by a set of recursive
relations, in which the initial segment of one of the mirrors may be chosen arbitrarily [11-13].
The method for solving the two-dimensional problem is given in [11], while the three-dimensional
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problem is tackled in [13] and [14]. If the system is designed to focus at points in two directions,
then in any intermediate direction the aberration will be quite small [15]. Such systems have the
advantage of a wider field of view compared with visible-range optical systems. For a fair comparison
one must naturally assume that in both cases the transformations are carried out by two surfaces.

As the number of reflections or refractions increases so does the number of possible aberration-free
directions. This sort of approach is equivalent to using polynomial interpolations having a set of
zeroes in the appropriate solid angle. The determination of surfaces for an N-focal system reduces
to the determination of N reflecting or refracting surfaces. The solution is given in terms of algebraic
equations [16, 17].

From the standpoint of HF techniques all the foregoing are antenna systems operating in the
reception and/or transmission mode. Recently wireless energy transmission systems, so called beam
systems, have become widespread. These too are designed on geometrical optics principles, which
means that their separate elements are positioned in neighbouring or Fresnel regions with respect
to one another. Their design is based either on the laws of geometrical optics or generalizations
thereof, partly using diffraction ideas together with Gaussian beam theory [18].

Specific optical-type systems may also be used to design focusing systems, in particular, systems
focusing along a line rather than into a point (coherent focusers). In the focusing of the primary
spherical or plane wave into a given focal line, one of the mirrors suffices to regulate the amplitude
along the focal line [19-23]. The solution to the foregoing problem depends on what is taken as
the intensity field along the focal line. If for the intensity one uses, instead, the energy flux
corresponding to the maximum intensity of the “principal lobe”, then the solution is as in [19],
whereas if the intensity is taken as the square of the amplitude along the focal line, then the solution
will be as in [22].
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