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KINOFORM OPTICAL ELEMENTS IN OPTICAL SYSTEM
DESIGN OVER A WIDE SPECTRAL RANGE

M. A. GaN and L. I. BOGATYREVA

Abstract—The paper uses KE as an acronym for kinoform optical element, and considers the design of
KE-based apochromatic high-resolution systems for use over a wide spectral range. The aberrational and
dispersional properties of KEs and ordinary optical elements are compared. It is demonstrated that
combining two regular grades of glass with a KE leads not only to apochromatic correction but can also
correct for monochromatic aberrations and the secondary spectrum, as well as for spherochromatism,
provided the isoplanatic condition is obeyed. Design methodology and philosophy are discussed for
KE-based apochromat-anastigmats that have 30-50% smaller masses than similar systems built around
more usual optical elements.

A challenging problem of contemporary optics is to design optical systems capable of high quality
image formation at the diffraction limit over a wide spectral range.

It has been shown [1] that kinoform-type synthesized hologram optical elements (inscribed on
ordinary glass substrates) [2] can operate effectively over a fairly wide spectral region. It is therefore
of great interest to analyse the corrective measures afforded through the use of kinoform optical
elements (KE) in the design of fast, high quality optical systems operating with nonmonochromatic
radiation. The use of holographic optical elements as corrective devices for monochromatic
aberrations has been considered in [3, 4]. The possible use of zone plates (a special case of KE)
as correctors of secondary spectra was advocated by Slyusarev [5].

In the present work we consider the prospects of applying KE to the design of apochromatic
anastigmat systems employing regular manufactured glass, and to correct residual aberrations
arising particularly in faults of the manufacturing process.

In order to exhibit the dispersion properties of KE and its advantageous position on the
(p~v)-diagram, which relates the Abbe number and the relative dispersion ratio p =v'/v, we shall
consider the generalized Abbe invariant [6]. The generalized Abbe invariant for an axisymmetric
surface with a KE has the form

Q=n<1—c<1—mu@>—m;¢nolo>, (1)
n n

where c is the curvature of the KE surface, I=1/S, I, = 1/S,, S and S, are the read/write source
positions for the holographic optical element, n and n, are the refractive indices at wavelengths A
and A, respectively, and m is the order of diffraction.

Hence the power of the surface with the KE is expressible as

¢ =C(n" —n—mu(ng —ny)) + mug,, (2)

where @, = ngly — ngl,,.

For a KE operating in air, whether on transmission or reflection, the expression for the power
may be simplified as follows:

In the transmission mode (n =n'=n, = nj, = 1) one has

@ =up,, m=1. (3)
In the reflection mode (n= —n'=n, = —nj = 1) we get
¢=-2C0—p)+pup,, m=1. 4

The first chromatic sum for a thin lens has the well-known form
Sitr = h25p =2 £
v
where h is the height of the first paraxial ray, ¢ is the (optical) power, and v is the Abbe number.
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An analogous expression holds for a KE, in keeping with (3) and (4):
Sehr = h25up (5)
and
Si*r = h?ope(1 +2C/@). (6)

So for a KE the number v is determined as follows:

For transmission,

and in the reflection mode
b Ao 1
84 (1+2C/o)

In the reflection mode, if C= —¢/2, a KE has no dispersion, while if C=0 its dispersion
properties are the same as in the transmission mode. We remark that if C #0 and ¢, =0, such a
KE is also dispersive, but in this event v is not determined and

S¢h = h22Cop. )

)

In order to present clearly the prospects for getting qualitatively new results by the combination
of a KE with regular glasses, enabling one to produce apochromatic systems, let us consider the
position of the KE on the (p-v) diagram.

The relative dispersion ratio for the KE is

p=V/v=204/6/" (10)

For example, vy, = —3.46; ppp=0.61 and vp ¢ = 0.39. A schematic (p—v) diagram is shown in Fig.
1. Tt shows that the KE occupies quite a special position and is considerably further from the
“normal curve” than a fluorite type crystal. In addition, there is no single optical glass or crystal
which has this relative dispersion ratio. One therefore appreciates that it is impossible to construct .
an apochromatic combination of a KE with a single grade glass. It is much more promising to
combine a KE with two grades of glass, where we emphasize that regular glasses are involved.

To calculate the optical power of apochromates one normally tries to solve a system of three
equations, which provides for the superposition of three colour images, but then the longitudinal
chromatic aberration at intermediate wavelengths cannot be controlled and may attain undesirably
large values. The simultaneous satisfaction of four equations partially overcomes the difficulties
and leads to a so-called four-colour apochromate [7]. The most rational option for the optical
power is via the least squares method, which makes allowance for the defocusing and spectral
coefficients of the actinic flux forming the image.
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The system of equations for determining the power assumes the following form:

> (T}.ai}.aj}.)(pi=2aj/1T;,, (11)
i=1 2 A
where
@; is the power of the elements at the primary wavelength,
a;; = (n;; — 1)/(n;Ay — 1) for the lens,
a;; = Af4, for the KE.

The second problem we have to consider in designing an objective with a KE has to do with
rectifying spherochromatic aberration, since an uncorrected spherochromatic aberration may lead
to none of the results obtained by apochromatic correction of the secondary spectra. We must
note that the spherical aberration of an object with a KE may always be eliminated for a single
(say, the primary) colour, so that

2
SHOE+ Y S =0, (12)
i=1

where S{ is the coefficient of spherical aberration of the ith lens component.

Since the power of the KE employed to obtain the apochromatic correction is far smaller than
the power of the lens, the dispersion-related change of the coefficient of spherical aberration of the
KE [8] is insignificant and may be neglected. Thus the coefficient of third-order spherical aberration
for an objective at arbitrary wavelengths will be written as

5= 51+ S - (St + S, (13)
which, when differentiated, gives

2
ds, = (dS}i’ — duSg}). (14)
i=1

it

The coefficient of spherical aberration for a thin lens has been obtained on the basis of the
Czapski-Eppenstein formula in [9]. We shall employ a more symmetrical expression in terms of
Coddington variables [10]. After fairly cumbersome transformations we obtain for (14):

, .
ds,;=h* Y ¢}MAX}+BXY,+CY}+ DX, +EY,+ G}, (15)

i=1
where
1 nt42 1 n+2
Tvani(n—17 vydn(n—1)?
1 n?+1 1 n+1
CvyrR(n—1) vyn(n—1)
130742 13n+42

s

v 4n? vy 4n
2(n+1) 1 n+1
nn—1) vnm—1)

3n+2 13n+42

42 )

B

E=L

n v 2n
_In(3n-2) 1 n*
Tyamn—1)? vydn—17
L=dl/p;
X, X, are lens shape parameters (of sag);
X=(C;+G)/(C,—Cy);
vy, vy, and vyare Abbe numbers for the lens and KE, respectively;
Y,, Y, are conjugation parameters, Y = (I' + 1)/(' = ).
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Fig. 2.

For given power and object distance dS, in (15) is a quadratic form in X; and X,. The spherical
aberration may therefore be eliminated for a whole family of X;, X, by satisfying the condition

d§;=0. (16)

Numerical studies have shown that the solutions sets of (16) are two branches of a hyperbola.
The condition for eliminating third order coma,

3 Si=0 (17)

gives, for a thin component with a KE, a straight line solution in the X,, X, plane as the general
solution of (16) and (17). For example, for K8, ®1 glasses: X; = —0.14, X, = 1.676 and X, = 1.75,
X, = —7.18 respectively. Therefore, the simultaneous elimination of secondary spectra and
spherochromatic aberration of a two-lens objective with KE may be combined with the satisfaction
of the isoplanatism condition.

It is well known that astigmatism and field curvature of the image in a thin system cannot be
completely eliminated. But by employing a plano-astigmatic compensator, such as a meniscus [11]
or a three-lens system [12], one can produce an apochromat-anastigmat. These methods are the
basis of a whole family of apochromat-teleobjectives which do not contain special glass or crystals,
and which are 30-50% lighter than comparable objectives utilizing special glasses or crystals.
Secondary spectra and aberration of a broad beam falling on one such objective are shown in Fig.
2. The parameters are: f” = 1000, 2 = 6°, relative aperture 1:8.

The lens plus KE component we have discussed can be utilized to construct various kinds of
apochromat—anastigmats to serve as front components of an objective with variable focal distance,
and similar systems.

Finally, we consider ways to correct remanent monochromatic aberrations due to manufacturing
faults, in particular, nonuniformity in glass, and errors in the optical surfaces employed in
constructing the holographic corrector. The required topography of the wavefront deformation
may be obtained by reconstructing it from the computer analysis of the interferogram [13].

The optical power (or carrier frequency, in hologram terminology) required in the hologram-
compensator construction can be selected by satisfying the condition for either apochromatic or
zero-correction (Fourier hologram). The resulting maximal spatial frequency on the hologram
surface will be too small to allow the construction of phase profiles of kinoform-type holographic



optical elements without substantial light diffusion. Such a hologram-compensator has very high
diffraction efficiency, does not require the introduction of additional elements into the optical
system being corrected, and its position in the optical system can be effectively utilized to balance

Kinoform optical elements

the aberration over the field of vision.

We conclude that the new class of apochromats based on kinoform optical elements enables one
to design high-resolution optical systems capable of producing images within reach of the diffraction
limit, over a wide spectral region, which will find application in solving a series of problems in

pure and applied optics.
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