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UNIVERSAL INVARIANTS OF PARAXIAL
OPTICAL BEAMS

V. V. Doponov and O. V. MAN’KO

Abstract—For paraxial optical beams propagating in a medium whose parabolic transverse profile of
dielectric permeability varies arbitrarily along the beam direction, universal invariants have been
determined, i.e. certain integral values that remain valid along the beam axis independently of the particular
dependence of the dielectric permeability on the coordinates. The effect of medium nonparabolicity on
the invariants is discussed.

It is known that for harmonic wave fields propagating in weakly nonuniform media the Helmholtz
equation for the field components in the Leontovich~Fock paraxial approximation [1] leads to a
parabolic nonstationary Schroedinger equation [2]. If the z-axis of a rectangular coordinate system
{x1, x5, x5} is chosen along the direction of propagation, then the parabolic equation assumes the

form
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where E = 2ng %y exp <% f no(z) dz) is one of the field components, ny, = n(0, 0, z) is the refractivee

4]
index of the medium along the z axis, k = 2n/4=4"! is the wave number in vacuum, and  is an
amplitude varying slowly over a wavelength.
By effecting the transformation k™! — h and z — ¢, Eq. (1) is seen to be the quantum-mechanical
Schroedinger equation for a unit mass particle moving in the potential field V = (n2 — n?)/2n,.
The operators of conjugate canonical variables £; —x, and p 1 — 140/0x; satisfy the usual commuta-
tion relations

[-Qh 13,] = i25ij9 i,j= 1, 2)-

The formal analogy [2] of the parabolic equation to the Schroedinger equation allows one to
utilize methods developed in quantum mechanics to solve wave propagation problems in nonuniform
media.

It has been shown in [3] that for certain classes of Hamiltonians, in particular, for any nonuniform
multidimensional quadratic form of operators whose commutators are c-numbers, there exist
conserved quantities (along the beam axis, in the present case) which depend only on the initial
state of the system and the form of the commutation relations, and not on the coefficients of the
corresponding quadratic or linear forms. These quantities were termed universal invariants, by
analogy with the Poincaré—Cartan universal invariants in classical mechanics. In order to obtain
similar invariants for the propagation of paraxial beams in optical media we consider a system of

four operators
~ . N ~ ., 0 A ., 0
Q1=X, Q2=.9a Q3=<—li—>, Q4=<—li—).
Ox

The specific problem addressed here differs from the one dealt with in [3], in that instead of
considering a system with any number of degrees of freedom we limit ourselves to a set of two
observables. But in return we obtain the explicit form of the invariants,

If the dielectric permeability of the medium, n2, is a quadratic or linear function of the transverse
coordinates x, y (and an arbitrary function of z, the coordinate along the beam), then in the
Heisenberg representation the operators 0,(z) depend linearly on Q,(0):

04(2) = Ay(2)04(0) + 8,(2). (2)
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We introduce the centred second-order moments

Qaﬂ = QaQﬁ = <%(QaQﬂ + QﬂQa)) - <Qa><Qﬂ> ’ (3)
where the angular brackets <- - > denote the expected value of the operators.
As a consequence of (2), the second-order moments satisfy the following relationship:

Qaﬁ(z) = Aau(Z)qu(O)Aﬂv(z) . (4)
Since the transformation (2) preserves the commutators, we have the identity
A@)ZA)=Z, 0 0 10
0 0 01
= ()
-1 0 00
A= || Ayl 0 -1 00
from which it follows that det A(z) = 1. Writing (4) in matrix form
0(2) = 1Q4p(2)ll = A@2)Q0)A(z) ©6)

and comparing with (5), we obtain for any parameter p, assuming the matrix Z is nondegenerate,
the identity

N
D(u) = det[2Q(z) — uE]1= ) DEu*". M
m=0
The quantities D'V are universal invariants, since they are conserved as the beam propagates
along the z-axis and do not depend on the detailed form of the coefficients in the quadratic
dependence of the dielectric permeability on the coordinates x, y. Since the matrix @ is symmetric
and T is antisymmetric, the series in (7) contains only even powers of u. N is the number of
transverse coordinates on which the amplitude will depend (either 1 or 2).
For a dielectric permeability having a general quadratic dependence on the coordinates, the D,,,
are given by the following expressions in the two-dimensional case:

D, = —2(xp,)(yp.) — (9P,)* — (0. + (PD)(¥7) + (PRI*) + 20N PPy ®)
Do = (xp.)*(7,)” + (<0, (7, = 2053)(PaP,)(xP)(1Py) — 2(xP) (42,) (xP, ) (V)
+ 260 (PP 7py) — (PNP2xD, ) + 265, (x2,)(PxP) (V) + 2(x2) (P} (xy)(P)
— ()PP — 200 (P2p)(XP)(3P) + 263) PP, ) (PoPy) — ()PP,

— PP + GNP — (PPN = (B3P + ¥ (ap,) . O)
It is of particular interest to consider the special case of an axially symmetric medium, when n?
depends only on x? + »? (as in a fibre light guide). Then if the matrix Q(z) at z=0 is invariant
with respect to a transformation of simultaneous rotation by an angle @ in the (x, y) and (p,, p,)

planes, it will remain invariant with respect to this transformation as the beam propagates along
the z-axis. In this case the DY}) become (to within a constant)

DY) = (xp,)* = (xp,)* + (x*)(p2), (10)
DY) =[(xp,)* + (xp,)* — (A)(p2)T*. (11)

In the one-dimensional case (N = 1) (a planar light guide) the universal invariant is
DY) = (x*)(p3) — (xp.)*. (12)

In the paraxial approximation not just the Helmholtz equation but the complete wave equation
becomes similar to a Schroedinger equation:
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Consequently, for any (sufficiently smooth) dependence of the refractive index n on the
longitudinal coordinate z, there will be universal invariants comprising time-like moments of the type

(%)= JW*(x, y O (x, y, dxdyde,  (pF)= — 72 fl//* % U(x, y, t)dxdydt, (p, = i;t%),
describing space and time limited beams:
DY = (12)(p?) + (x2)(p2) — (tp,)? — (xp,)* — 2(xt)(PsPy) + 2(xP:)(2Py). (14)
DY) = (x2)(t)(p2)(p?) + (x£)*(peP,)? + (X0, (tp,)? + (xp,)2(tp:): — (P2)(PP)(xE)? — (XA)(2)(Pop,)?
— (A)P2)p)? — () P2 (xp.)? — (PP)EP)(xP,)? — (D) (P2)(p2)? + 2(p2)(xp)(tp,)(xt)
+2(2)(xp) (PP (xP,) + 2(p2)(x0)(xXP)(P5) + 27 )(Ep )PP (D) — 2(ep )(tp) (1P, ) (xPy)

— 2P Ntp) (xt)(PPe) — 2(x0) (PP )EPL)(xP,), (15)
D@ =1
DY =2(xy)(p,p,) — (tp)* — (y,)* = 20xt)(p,p,) + (*)(PD) + (2)(p2) + (12)(p?) — (xp.)?
—2(yt)(pyP.) — 2(xp,)(yPx) + 2(xp,)(tp) + 2(yp)(eD,). (16)

We introduce a Gaussian density matrix of an axially-symmetric optical beam propagating in
an axially-symmetric medium.

p=Nexp(—a(xi+y}) —a*(x3 + y3) + 2b(x1x, + y,y,) — fX1 92 — [*x,01).

Calculating the dispersion and substituting it into the universal invariants we obtain the following
relations:
(a+a*)*— f? 4p? + f?
——————>—— =const, ——— " = const,
(a+a*)*—4b (a+a*)’—4b
4b* + f*
————"— = const,
(@a+a*)y—f a+a*
f

2
—[D®-D¥P]=——2 _ =const.
2P == o

= const,

Physically these equations represent the conservation of the correlation radius to beam width ratio,
as well as of the “impulse moment” {xp, — yp.>.

Lastly, we discuss the conservation of the above invariants for a nonquadratic medium, taking
a one-dimensional example with an effective potential V (x) (cf. Eq. (1));

w2
V(x)=7x2 + ) Ax"/n.

nz3
If A, =0 we have the invariant (12). If the A4, are non-zero we readily obtain

90 ¥ AL xp — B px 4 ], (17)

dz .33
This clearly shows that in general D depends on z whenever 4, # 0. However, if the anharmonic
terms are small, i.e. 4, — 0, then in calculating D(z) we may use the zero-order values for the higher
moments entering the right-hand side of (17) (i.e. computed with A, =0). In that case D(z) will
oscillate near the initial value with an amplitude of order A, as 4, — 0. However, it is significant
that for a certain class of initial states this amplitude is of higher order smallness than 4,. For
example, if only 4, and A, are nonzero, this situation obtains for a Gaussian initial state (when
the mutual coherence function is an exponential of a quadratic form), since in zero order a Gaussian
state stays Gaussian with zero first order means, provided it started out that way initially. Then
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the coefficient 4, becomes zero, since for a Gaussian state all odd moments vanish if they are
vanishing in first order, whereas A, vanishes on account of the well-known relation for Gaussian
distributions: ‘

Gty =3(G), px® +xpd =3 xp + px).

It is also interesting that for non-Gaussian states, and when A4; # 0 (in zero order), the function
D(z) will again oscillate around the initial value D(0):

D=D0)+AD

R + —_ _
4 42 4 4 27
3CM CL AN BP 3AP>

1[sin3yz/CM CL AN AP BP
=AB—C?—-34, - - —
y 3
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42 4?2 2 4
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3

+ sin yz(

4 4y & 4y
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where
A=(Dcor  B=(pizos C=0(Plcor M=o,

P=(pxizo» L=0pz0s N=()lmo.
If only A, is nonzero, D(z) will increase:
1 in 4 Cy Cb Bk 3Bn A 3Ak
D(z)=AB—C2+—A4[Sm ’Z<9—y—* ——3—"—ﬂ+—>
492 4 8  8&* &° & 8 &
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o T T
4* 4 8 8y* 8 8
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where

n=p)oees  k=0%aces G=mgr  P=(PYezor  m=(*p)=0-

In addition to the above invariants associated with second-order moments, one may construct
more complicated universal invariants expressed in terms of fourth-order moments [4].
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