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SPATIAL FILTRATION OF COHERENT RADIATOR
HARMONICS

A. S. MARKIN and V. B. STUDENOV

Abstract—For optical harmonics of any integer (and fractional) order, a spatial filtration technique is
considered making use of the zone plate dispersion properties. A method is suggested for estimating the
filtration effectiveness as a function of filter parameters and the set of harmonics. Experimental data are
presented on filtration of the second and third harmonics of a non-single-mode laser.

Selection of vacuum ultraviolet (VUV) harmonics from the spectrum of laser radiation harmonics
was achieved in [1, 2] by means of a spatial filter (SF) consisting of a zone plate (ZP) with a
specified number of zones and diaphragms situated in the ZP principal focus, chosen for the
wavelength of the particular harmonic. It was shown that for integral harmonics the condition for
optimal filtering could be guaranteed by choosing the appropriate number of ZP zones. The method
can also be employed to select higher order harmonics in sources of VUV coherent radiation with
cascade frequency multiplication (cf. [3, 4]). Here traditional filtering methods based on absorption
filters, prisms and diffracting lattices are useless, on account of the strong VUV absorption of
various media, and of the impossibility of working with focused beams.

In the present work the general nature of the filtering effectivity is examined as a function of SF
parameters, and of the wavelengths in the original discrete spectrum.

Let us suppose that two plane monochromatic waves 4 and 4’ are incident on the ZP, A being
the selected wave. In order to calculate the condition for optimal filtering we use the formula for
the distribution of wave amplitudes near the ZP axis, when a plane monochromatic wave 4 of unit
amplitudes is normally incident upon it [5]:
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Here x is the coordinate on the ZP-axis; r is the distance from the ZP-axis; R, = \/;2‘ + pZ;
pm=+/mAL is the radius of the mth ZP zone; L is the principal focal length; 1,(2n/A rsiny,,) is
the zero-order Bessel function; y,, is the angle subtended by the mth zone radius at a specified point
on the ZP-axis; N is the total number of ZP zones.

Formula (1) was obtained for a ZP with a first transparent zone and an odd number of zones,
assuming the angles y,, are all small. Then in the 2 wave principal focal plane the amplitude
distribution for the A’ wave has the form:
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We introduce a dimensionless parameter y = 1.22r/6R,, where 6R, = 0.61(AL/N)'/? is the radius
of the principal focus of the wave in a cross-section that is perpendicular to the ZP axis. In this
case (2) becomes,
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while at the A wave principal focal point

N
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It follows from (3) that the amplitude distributions of the 4 and 1’ waves in the principal focal
plane of the 1 wave is determined solely by the ratio 4/A’, the number of ZP zones and the diameter
of the filtering aperture. Expression (4) provides a rule for choosing the ZP zone. The filtering will
obviously be most effective when the total number of ZP zones is such as to minimize A'(L,0). If
the ratio of 1 and 1’ is p/n, where p and n are integers, then the amplitude A(L, 0) vanishes whenever
N=2gn—-1(qg=1,2,...)forall A <1, as well as for 1> A, excluding the cases when /4" # 2§ — 1,
" where £=1,2,3,.... If /2’ =2¢ — 1, the principal A-wave focus coincides with the (£ + 1)-order
secondary focus of the 4’ wave, as can be seen from (4), the amplitude of both waves at this point
being equal to (N + 1). The transverse focal dimensions are different and are determined by (3). If
the original radiation consists of discrete components associated with integer number ratios, then
the amplitudes of all A’ waves, except the one to be selected Apin, will vanish at the principal focus
of the 1., wave whenever

)

N=2s—-1, (%)

where s is the smallest common factor of the fraction A.;,/4’.

The proposed SF may therefore be used to select fractional order harmonics which may arise,
for example, in the interaction of powerful laser radiation with plasma {6].

Equation (3) was used as the starting point for a computer calculation of the optimal effectivity
for filtering 4, waves from a spectrum of 4; waves, where 4;=4/j,j=1,2,3,..., k, valid for both
integers as well as fractional harmonics with identical numerators. According to (5), the filtering
of the A, waves will proceed most effectively when the total number of ZP zones satisfies N = 2gk — 1.
Since all waves arriving at the SF have unit amplitudes, the filtering effectivity 7,; of the 2, waves
from among the 4; waves will be determined by the ratio of the corresponding energy currents of
these waves across the SP diaphragm, i.e.

_ f5ARQoxdx

(o) = ,
T [E A () dy

where ¥, is the diaphragm radius.

Calculations have shown that the filtering effectivity for k > 3 with zone plates having N ~ 30is
already in excess of 10* and grows with the number of selected harmonics. Figure 1 shows 7,
with k=3 and j =1, 2, as a function of SF diaphragm radius. Figure 2 shows the results for k=4
and j=1,2,3.

We infer from these figures that the filtering effectivity of higher harmonics increases dramatically
as the diaphragm diameter is decreased. The calculation also showed that for 0 <y <1.2 the
distribution of the jth squared amplitude, A}(x, N), in the SF diaphragm’s plane is practically
independent of the total number of zones when N > 30. Hence the ratio of the filtering effectivities
for two zone plates with N; and N, < 30 is given quite accurately by the relation

i N1)=<N1+ 1>2 ©)
’7kj(X, N,) N, +1

Equation (6) relates the fundamental characteristics of various SFs, and enables one to calculate
the filtering effectivity of any SF in terms of the known parameters of another one.

The experimental realization of the proposed filtering method has been carried out for the second
and third harmonics of a neodymium laser, obtained by a cascade transformation of the fundamental
width (4 = 1.064 nm) through a KDP crystal. The fundamental and the two harmonics were guided
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Fig. 1. Reduced effectivity n, and power W, for a selected third harmonic (from a spectrum of first- and
second-order harmonics) as a function of diaphragm radius y.
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Fig. 2. Reduced effectivity n, and power W, of a fourth harmonic (generated from a spectrum of first,
second and third orders) as a function of the diaphragm radius y.
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by a ZP with N =41 manufactured by the photolithographic process. A diaphragm of 100 ym
diameter was located at the principal focus of the ZP (4; = 1 m) for the third-order harmonic. The
values of the filtering effectivity obtained thereby, 75, ~ 8 x 10% and 53, ~ 3 x 10%, are in good
agreement with the calculated values ~2 x 10* and ~ 10°, respectively.
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