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MODAL COMPOSITION OF RADIATION EXCITED BY
LOCALIZED SOURCES WITH PARABOLIC REFRACTIVE
INDEX PROFILE

A. B. VALYAEV and 1. N. SISAKYAN

Abstract—Modal composition is studied for a waveguide with parabolic refractive index profile through
the known directivity diagram of a localized source. Conditions have been determined under which the
angular distribution of the localized source field is describable by a decomposition in terms of coherent
states. Explicit expressions have been found for the coefficients of waveguide mode excitation, and for the
case of non-directed sources a recursive relation was determined for their calculation. The mode composition
of a dipole source is shown to be basically dependent on its position with respect to the waveguide axis.
It is also demonstrated that, even in the case of a non-directed radiator, selective excitation of individual
groups of waveguide modes is feasible.

The generation and control of wave fields in waveguides requires an understanding of the mode
composition of directed and nondirected sources, as well as of the inherent antenna response in
refracting waveguides. An important problem in this connection is the derivation of the initial
energy distribution among the modes (actually given by the field amplitude distribution over the
initial cross-section of the beam) which are excited by the sources with a known directivity diagram
(DD) in a uniform medium.

This question has been discussed in a number of papers. For example, the mode excitation
coefficients of normal waves in a uniform layer with boundaries have been calculated in [1, 2],
while a WKB calculation for excitations of the underwater-sonic-channel (USC) in a shallow ocean
has been performed, which took into account both the waveguide boundaries and the refraction
of waves [3].

The aim of the present work is to examine the initial composition in a refracting waveguide of
modes which are excited by localized sources of radiation. We depart from [1-3] in that the essence
of our method is a field expansion in terms of exact solutions of a parabolic equation, in what
amounts to a coherent state expansion [4, 5]. The problem is discussed in terms of a model of a
multimode gradient waveguide with a quadratic refractive index distribution, which has been used
in a number of important cases to describe natural waveguides [6, 7]. The approach is valid for
deriving the low order (m <« M) mode excitations which are responsible for energy transfer over
very large distances, for example, in the USC of deep oceans or in the ionospheric waveguide
channel (IWC) [6, 7]. It is especially convenient when the WRB approximation breaks down, in
particular for the description of rays in the vicinity of the waveguide axis.

We consider a two-dimensional waveguide, uniform in the horizontal direction x, with a parabolic
refractive index profile in the vertical z direction:

n?(z) = ng — w?z?, (1)

where n, is the refractive index on the waveguide axis, and  is the gradient parameter of the
medium responsible for the transverse distribution of the refractive index.

A radiation source in such a guide may be considered localized, provided its linear dimension
is much less than the width of the fundamental mode (m =0), i.e.

<« A(zg) (2)
A(zo) = (k)™ 12 (3)

where k= 27n/4, A being the wavelength of the radiation. Such sources can either be pointlike (I « 1)
or extended (I > 1), and they may have a definite, albeit very narrow, DD.

In a uniform medium the radiation source field in the far zone (at distance L > [2/41) may be
represented as a superposition of uniform plane waves [8], each of which is a solution to the scalar
Helmholtz equation, and propagates along the trajectory of a geometrical ray. However, new features
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arise if the radiation sources are situated in a refracting waveguide. First of all, it has been shown
[4], that in a medium with a parabolic index profile radiation propagation is conveniently described
in terms of a coherent state [CS] expansion. The coherent states correspond to wave packets
maximally localized in the phase space of the beam. The “centre of mass” of the wave packet
propagates along geometrical ray paths, its widths defines the localization of the ray and is the
same as the width of the fundamental mode (3) in the medium described by (1). Therefore, on
physical grounds, it is natural to consider the DD as a function which describes the distribution
of the source energy over the coherent states. From a mathematical point of view this is equivalent
to replacing the original ray described by a uniform plane wave by a CS, i.e. by a nonuniform
plane wave with a gaussian amplitude distribution, the latter representing a wave packet of uniform
plane waves with some angular width.

Since a uniform plane wave is a mathematical abstraction, and in fact it possesses a certain width
(z)pp (determined, for example, by the aperture of the receiver employed to measure the DD), the
above replacement is completely legitimate if this transverse dimension is small compared to the
width of the CS (i.e. the zeroth mode width), in other words, if

A(zo) > (Z)pp 4)
or
w <« (2kA2(z)pp) L. 5)

If the DD is fixed within an angular error A(w)pp, then the right hand side of inequality (4) must
be replaced by A(z)pp = 4/(4nn sin(A(u)pp) as indicated by the uncertainty relation (4). The condition
(4) is then equivalent to the requirement that the angular width Aw of the CS does not exceed
Agpp: Ap < A(@)pp.

The second feature peculiar to the treatment of sources in such waveguides is that the very idea
of a waveguide DD can only be applied if, for distances corresponding to the far zone, the transverse
nonuniformities of the medium hardly affect the parameters of the radiation. The quantity which
describes the characteristic distance over which the change in radiation parameters in the ray phase
space is insignificant (i.. stays less than its dispersion) is the stationarity length X introduced in
[9]. For example, in a CS ray in medium (1) the stationarity length is the minimal distance along
the axis over which the shift of the wave packet centre in the ray phase space does not exceed its .
width. Over distances of this order the medium may therefore be considered uniform, in the sense
that nonuniformities do not affect the ray propagation significantly.

For medium (1) the stationarity length is given by the expression [9]:

X% =ng/wlal, (6)

where a = (kw/2)"?- (zo + in sin @o/w); z, is the initial (x = 0) vertical coordinate of the ray, and
@, is the initial angle between the ray and the x-axis. The stationarity length decreases as « increases.
Hence, if & be the mean number of rays excited in the medium, such that & <a,,, then the
stationarity length of such a bundle is equal to X7. The angular distribution of the field from the
localized source is thus described by means of a DD which we denote by D, (here and below the
DD is understood to mean a source field expansion in terms of coherent states), provided

/i« X5, (7

applies.

As a numerical example we assume that for sound propagation in the USC of a deep ocean with
frequency f =100 Hz and w = 10~4 m~, the source may be considered localized when [« 600 m.
A similar restriction holds for the aperture of the receiver. If the source is near the waveguide axis,
then one may estimate the stationarity length from (6): X§ ~ (2kw sin? @,,,)!/?. Since the maximum
slope angle does not exceed u = /12 for the USC in (6), we find X% =4.5 x 10°> m. Accordingly,
for localized sources satisfying (2), condition (7) applies, and the angular distribution of the energy
of these sources is correctly described in terms of the DD.

Let us now analyse the composition of modes excited by sources possessing various DD. Let
D,(0; u) be the directivity diagram of a localized source situated at the point (x,, z,) of a waveguide
whose effective width is h. The angle 6 defines the direction of the centre of the DD with respect
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to the waveguide axis, while u is the angle between the ray and waveguide axis. It is known [4]
that the redistribution of energy over the ray modes is given by the Poisson law:
[<mlay? = o >™ exp (— |al?)/m! @®
The mode excitation coefficients may then be represented in terms of an integral:
_ J (D65 @)™ exp(—|of*)/m!)d(Im o)

" § D,(6; @)d(Im a)

) ©)

where
la|? = (kw)2)(z2 + n? sin? p/w?);  d(Im a) = (k/2w)n cos @ do.

Equation (9) characterizes the ratio of the energy stored in the given mode of the guide to the
total energy radiated by the localized source.

As a concrete example consider a dipole source with D,S(®;u)= D, cos*(® —u) within a
nondirected radiation source with D,(®; u)=D,. Substituting D, into (9), and performing the
calculation, we obtain an explicit expression in terms of finite sums corresponding to the dipole
and the nondirected source:

m 'm—p+1/2)
en(@; &o) = (B exp(— &3
° POCM) L F 3 DR+ 1)
X E3P[@1(0) Ay, + (m—p+1/2)u702(O)4,,— 511] (10a)

e B Tm—p+1/2)
oulCo) = @XP(= 8/ ¥ o P A, (10b)

where ko
Eo= /7 z, is the dimensionless vertical coordinate of the source,

1= (2kn§ /20 — E5)''*;
®,(®) = cos? (@)/(cos® O + 1);
®,(0) = cos(20)/(cos®> © + 1);
exp(—u?),

’

P 'qu—l
S TR

"
erf(u) =2n"12 J exp(—t2)dt is the error function, and
0

I'(t) is the gamma function.
For sources located near the guide axis (zy < no/w) expressions (10a), (10b) simplify [10]:

m I'm-—-p+3/2)

em(®; Eo) = (B exp(—&3)/ o) 2.

2p _ -2
S Tm—p+ )T(p+1) E5P[@,(©) + (m—p + 1/2)uy “@,(9)]

(11a)

m Fm-—p+3/2) 2p

em(o) = (exp(—&3)/1o) 2

Solm—p+ DI(p+1) °"’ (o)

where o = (k/2w)?n,.

The dependence of the mode excitation coefficients for a dipole source on the direction of the
DD is characterized by the first term in square brackets of (11a) which does not depend on the
mode number. The second term gives contributions which are important for ® ~ n/2, and in general
depends on the mode number as well as the rest of the parameters (x,, 4, ®). These contributions
have been studied in more detail in [10]. We only note that when © = n/2 the mode excitation
coefficients are small—this is the weakly-excited regime of the waveguide. On the other hand, a
change in direction of the DD (the term ®,(®) may be neglected) does not lead to a redistribution
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Fig. 2.

of energy among the modes, but only to a general diminution of the energy of the low-lying modes
trapped by the waveguide. In addition, if the DD direction is fixed, Eqs (11a) and (11b) are
equivalent, so that we may further restrict discussion to a nondirected source.

Figure 1 shows the dependence of the excitation coefficients, normalized to ¢,(0), on the source
distance along the waveguide axis. We notice a characteristic shift in the maxima of the excited
modes along the guide axis as the mode number increases. It can be seen therefore, that even for
nondirected radiators modes are excited nonuniformly. For example, for an axial source the
excitation coefficients decrease with increasing mode number.

Therefore, one may in principle selectively excite separate groups of modes of nondirected
radiators. As an illustration of this possibility, Fig. 2 shows the dependence of the coefficients of
excitation on the mode number for various source positions along the waveguide axis. It is clear
from the curves that the nonuniformity of mode excitation weakens as the source is displaced along
the axis.

In conclusion we give a recurrence relation which simplifies the calculation of the mode excitation



Modal composition of radiation 123

coefficient for a nondirected source:

m—1
Em(éo)< z Sp(éo) + ééam_l(éo)>/2m, m= 1, 2, PP (12)
p=0
It reduces to ¢,(0) = [(2m — 1)/2m]e,, ,(0) for an axial source.
We have seen that the method presented enables one to calculate explicitly the excitation
coefficients which determine the initial mode composition. The method may also be a useful
alternative to the WKB approximation for investigating excitations in natural waveguides.
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