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MODELLING THE INTERFERENCE OF
SURFACE AND SPATIAL WAVES

G. N. ZrizHIN, S. A. KiseLeov, L. A. Kuzik and V. A. YAKOVLEV

Abstract—The problem of interference of a metallic surface EM wave (SEMW) and the spatial radiation
launched in SEMW excitation is discussed within the impedance approximation.The solution of the
parabolic equation for the field above the metal is obtained in terms of special functions. The wave
emanating from the metal edge is computed by the Kirchhoff-Huygens diffraction integral. The interference
pattern is observed at some distance from the metal specimen in a plane perpendicular to the metal surface.
The distances between the extrema of this pattern agree with values obtained in the geometrical optics
approximation for two interfering rays, the ray emanating from the metal edge and the spatial ray formed
at the slit at which the surface wave is launched. The phase difference between the two rays is controlled
by the aperture launching the surface wave, the parameters of the metal specimen and the length of the
metal surface. The interference parameters yield the real part of the metal permittivity. This model was
used to explain the experimental data for a film of gold deposited on a glass plate in vacuum. Combining
the real part of the dielectric constant and the imaginary part determined by measuring the surface wave
propagation path gives information on the surface of the metal specimen.

The surface electromagnetic wave (SEMW) is a sensitive tool in sounding out the properties of the
subsurface layers of metals. The amplitude of the sounding wave is largest at the surface and by
measuring its attenuation one may obtain the absorption coefficient in the metallic specimen [1]
and deduce the imaginary part of the complex effective index of refraction. The real part of the
effective index of refraction can be determined by phase spectroscopy of surface waves [2],
specifically, from interference measurements of the phase shift.

The idea of the experiment is illustrated in Fig. 1. The exciting radiation is incident on the
aperture formed between the metal and a screen, is diffracted at this slit, and is partially converted
into a surface wave. This SEMW propagates for a distance a along the surface of the metal to its
edge where it becomes a spatial wave that interferes with the wave diffracted at the slit. The
interference pattern is recorded in a plane perpendicular to the metal surface and at a distance b
from the edge of the metallic specimen.

We analyse the intensities in the interference pattern in two ways. First there is the problem of
propagation of the surface wave and the diffracted radiation over the metal, using the impedance
approximation. The surface wave propagates along the surface z = 0, characterized by the impedance

Z=R—-iX=¢", (R,X>0, (1)

where ¢ is the permittivity of the medium.

We consider TM polarized monochromatic radiation at frequency v. The non-zero components
are H,, E, and E,. Evaluation of the field reduces to the determination of H,, while E, and E, are
calculated by Maxwell’s equations.

The surface wave is excited at a slit of height d in the plane x =0. The problem is invariant
under translations along the y-axis. In the domain of SEMW propagation we are to solve the wave
equation

H(x,z,t)=0 2)
subject to the boundary condition of Leontovich [3] for media of large &, viz.
oH
a—+ikZH=0 for z=0, k=2nv. (3)
z
The initial condition is given by the exciting field at the slit
Vo(z) = Ae~ oz 4 Beikaz for 0<z<d. 4)
We seek the solution in the form
H(x, z, t) = V(x, z)eltx"iot, %)
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Fig. 1. Generation of interference pattern under aperture excitation of surface waves.

Then Eq. (2) reduces to a diffusion equation with the coefficient D = i/2k

ov oV
—=D—, 6
ox dz? (©)
and the boundary condition becomes
ov
(T+ikZV(x,z)=0 at z=0. (7)
y4

The formalism of solution of the parabolic equation (6) is described in detail elsewhere [3]. The
solution may be written

Vix,z)= J‘w dz'G(x, z — 2')Wy(2), 8)

where
k >”2 ik(z—2)? in
exp ——— — —

G(x,z—z2)= <—
2nx 2x 4

is the Green function, and V,(z') is the initial condition that is continued into the region z <0 in
an appropriate manner taking into account the boundary condition.
For the initial condition (4) the continued initial condition has the form

Oa Z>d
Aeaz 4 Beikaz, O<z<d
Aa_ieikaz__Ba-i_ie—ikaz
V)= 7T " o)
0 A B

+22< - )e'”‘zz, —d<z<0

a+2Z a—2

1_ —ik(x+2Z)d 1_ ik(e—Z)d .
2Z<A © _p-—° )e-*b, z< —d.

a+2Z a—27Z

Substituting (9) into (8) we get the solution of the parabolic equation in the form

1
V(x, z) =§e"‘§)2A e X W(p+1~{)+Be**W(—p+1—{)

+elrhe?
2

1 Be2rt  ge—2¢¢
(e__ © )20W(0+ 14+ {)
p—0c p+o

_ +
—4e Sy )= Bt LT Wip s oy
p+o p—o
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+ 1 e‘2< 4 B )20W(a +1)
2 p+o p
+(B pto )W(p+r)+(A——B>W( p+1), (10)
+0
where
T =exp(in/4)— [
= exp (m/4)Z
= exp (m/4)og /kx
{=exp(in/4) - fé
s
and

2i (¢
W() = exp(&?) —IJ exp(n?)dn is the integral function of the complex argument.
T viwo

Suppose that the slit is irradiated by a plane wave, then A=1, B=0, and « =0 in Eq. (4), so
that the solution may be written as

Vix,z)= % W -0+ e(”oz- —W(@+1+0) +% W+ +e"Wo+1)—W(r). (11)

This solution (obtained under the impedance approximation) is valid for x obeying the inequality
lkx/e?| « 7. (12)

It is valid in experiments with metal specimens of ¢~ 10° and x~10cm in the range of
y~1000 cm ™1

A calculation of the field near the metal surface was carried out for a metal specimen with
v, = 80,000 cm~! and v,=800cm™’, aslit of height d =60 um irradiated by a frequency of
v=1000cm ™.

The impedance of the metal specimen is calculated as

2\ 1/2 1/2
el
V2 Y
v vt2 1/2 1/2
ey
V2,

The distribution of the field derived by Eq. (11) is similar to that describing the Fraunhofer
diffraction at a 2d slit, so that the directions to the minima 0, obey the condition

=Al/2d,

(13)

where =1, 2, etc. and A is the wavelength.

The presence of the impedance plane, however, causes the zero diffraction maximum to be divided
into a surface wave and an edge spatial wave. Figure 2 shows distributions of the field near the
surface recorded for different distances x = a of the exciting aperture. The surface wave is localized
at the metal surface and dies out in its propagation along the surface. The maximum of the spatial
radiation finds itself elevated from the surface with the distance a, and the minimum separating
this radiation from the surface wave is near the surface. If we follow the phase of SEMW we note
that if differs from the phase of the surface wave that propagates along the surface without being
affected by the spatial diffracted radiation. The additional phase shift is controlled by the size of
the exciting aperture d, the parameters of the metal and the distance a from the aperture. However,
it may be deemed constant in a certain interval of distance a.

If we calculate the field at the edge of the specimen, we can obtain the distribution of intensity
along the z-axis of the interference pattern by making use of the Huygens principle. We seek the
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Fig. 2. Distribution of intensity near the surface in the vertical coordinate for three distances x = a from
the exciting slit.

field as the Kirchhoff integral [4]

. — ikr —ik
Hy(x,z)= ! exp<z>‘[ dc[gfe——Hy 0 :|, (14)
\/m 4) Jc n \ﬂ. on r

where C is any contour embracing the point (x, z), and r is the distance from this point to the
contour. Let us choose the contour passing along the z'-axis and closing at infinity. Assuming that
kr> 1, the integral reduces to the form

m —ikr b
H(x,z)= /gk-exp<i§+ika>4r> dz’e Vix, z’)(—i—+—>, (15)
/4 0 r /a2 +Z’2 r

where V(x, z') is the field at a distance a from the slit launching the surface wave calculated by
Eq. (11), and D, the coordinate of the diffraction minimum. For z’ > D,,, the field is assumed to
be zero.

Figure 3 presents interferograms calculated by Eq. (15) for three different values of a and with
the parameters v, and v, as indicated above.

The analysis suggests that the positions of extrema of interferograms may be determined by the
geometrical optics approximation, that is, the equation

nieea + /b2 + 22— /(b + a)? + 22 = (m + Am)/2v (16)

holds true, where ni is the real part of the effective refractive index for SEMW, m is the number
of an extremum—even for maxima and odd for minima, and Am is the additional phase of SEMW.
The theoretical interferograms were compared with the experimental interferograms obtained
for a film of gold, about 2000 A thick, that had been thermally deposited onto a polished glass
plate. We used the experimental distributions of intensity in the interference patterns recorded for
different a at the same frequency v = 984.4 cm ™! to determine the real part of the effective refractive
index for SEMW, and by measuring the attenuation of SEMW we determined the imaginary part
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Fig. 3. Interferograms computed by Eq. (16) for different a.

Table 1.
No. of extremum
2 3 4 5 6 7 3 9 10

a=14cmand b=432cm

Theor. 1.61 1.97 2.32 2.57 2.88 311 332 3.51 372

Exp. 1.61 1.97 2.32 2.61 2.85 3.10 3.51 3.53 3N
a=25cmand b=432cm

Theor. 1.08 1.38 1.60 1.85 2.06 2.25 2.41 2.58 2.76

Exp. 1.08 137 1.68 1.87 2.07 2.27 2.43 2:59 2.75

of the index [1]. The following parameters of electrons were obtained: v,=51,000cm ™" and
v, =460 cm~!. Calculations of interference patterns for these values were carried out by Eq. (16).
The values of extrema of both experimental and theoretical interferograms are summarized in Table
1 for two sets of values of a and b (see Fig. 1).

The calculated values are seen to coincide well with the experimental interferograms. This proves
that the treatment of interferograms in the geometrical optics approximation was correct. However,
the calculation by the impedance approximation can supply information on both the real and on
the imaginary part of the effective index of refraction of SEMW.
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