МОДИФИКАЦИЯ ПАРАБОЛИЧЕСКОГО УРАВНЕНИЯ ДЛЯ МОДЕЛИРОВАНИЯ УПРАВЛЕНИЯ АДАПТИВНЫМИ ОПТИЧЕСКИМИ СИСТЕМАМИ

В.Х. Багманов, А.Х.Султанов

Уфимский государственный авиационный технический университет

Аннотация

Предложен метод приближенной стохастической эквивалентности позволяющий привести параболическое уравнение, описывающее распространение оптического излучения в турбулентной атмосфере к уравнению типа Калмана-Бьюси. Полученное уравнение может быть использовано при моделировании систем управления адаптивными оптическими системами на основе фильтров Калмана.

Введение

Одной из главных задач адаптивной оптики можно считать компенсацию искажений волнового фронта, вызванных прохождением света через флуктуирующую среду (турбулентную атмосферу). Искажения должны быть оптимальным образом оценены и скомпенсированы, что может быть осуществлено с помощью пространственной фильтрации на основе фильтра Калмана. Вопросы построения фильтров Калмана-Бьюси для систем с распределенными параметрами рассмотрены в работах [1, 2]. В данной работе ставится задача модификации уравнения описывающего прохождение света через турбулентную атмосферу с целью приведения данного уравнения к стандартному виду, описывающему фильтр Калмана. Согласно калмановскому подходу, задача состоит в оптимальной оценке случайного процесса $\varphi(x,t)$ удовлетворяющего стохастическому дифференциальному уравнению

$$\frac{\partial \varphi(x,t)}{\partial t} = L_x \cdot \varphi(x,t) + C(x,t) \cdot \xi(x,t), \qquad (1)$$

где L_{x} - линейный дифференциальный оператор, характеризующий объект управления, C(x,t) - некоторая произвольная функция, $\xi(x,t)$ - возмущающее воздействие, x - пространственная координата, t — время.

В случае распространения оптического излучения через турбулентную атмосферу комплексная амплитуда оптического поля $U(z, \vec{\rho})$, где z — координата вдоль направления распространения излучения, $\vec{\rho}$ - радиальный вектор, удовлетворяет уравнению параболического типа [3].

$$2 \cdot i \cdot k \cdot \frac{\partial U(z, \vec{p})}{\partial z} + \nabla_{\perp}^{2} U + k^{2} \cdot \tilde{\epsilon} \cdot U(z, \vec{p}) = 0, \qquad (2)$$

где -
$$\nabla_{\perp}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$
.

Уравнение (2) является линейным стохастическим дифференциальным уравнением в частных производных, содержащим в качестве коэффициента при комплексной амплитуде $U(z,\vec{\rho})$ случайное поле $\tilde{\varepsilon}(z,\vec{\rho})$ флуктуаций диэлектрической прони-

цаемости. Стохастический член $\tilde{\varepsilon}(z,\vec{\rho})$ $U(z,\vec{\rho})$ в уравнении (2) в отличие от стохастического члена уравнения (1) имеет принципиально иную структуру, так как случайное воздействие в уравнении (1) аддитивно по отношению к функции, описывающей состояние поля, а в уравнении (2) — мультипликативно.

Постановка и решение задачи

Если уравнение (2), описывающее распространение оптического излучения, привести к виду

$$\frac{\partial U(z,\vec{\rho})}{\partial z} = \frac{i}{2 \cdot k} \nabla_{\perp}^{2} U(z,\vec{\rho}) + \frac{i \cdot k}{2} \cdot \tilde{\epsilon} \cdot U(z,\vec{\rho})$$
(3)

и формально сопоставить с уравнением (1), описывающим эволюцию стохастических динамических систем, то можно прийти к следующему заключению:

- 1) независимой переменной, соответствующей времени t, является координата z. Аналогия z со временем проявляется не только в формальном соответствии позиционного характера, но также и выполнении принципа причинности, который применительно к уравнению (2) означает, что состояние поля $U(z, \vec{\rho})$ в точке z_1 не зависит от состояния среды в точках $z > z_1$ [3];
- 2) оператору L_x соответствует дифференциальный оператор $\frac{i}{2 \cdot k} \nabla_{\perp}^2$.

Введем в рассмотрение уравнение

$$\frac{\partial U(z,\vec{\rho})}{\partial z} = \frac{i}{2 \cdot k} \nabla_{\perp}^{2} U(z,\vec{\rho}) - i \cdot k \cdot \mu(z,\vec{\rho})$$
(4)

которое получается путем замены случайного поля $\tilde{\epsilon}(\vec{r})U(\vec{r})$ в уравнении (3) некоторым случайным полем $\mu(\vec{r})$.

Данное уравнение по своей структуре, с одной стороны, соответствует уравнению (1), а с другой стороны, адекватно уравнению (3), если случайное поле $\mu(\vec{r})$ в каждой точке пространства будет в статистическом смысле эквивалентно случайному полю $\tilde{\epsilon}(\vec{r})U(\vec{r})$. Здесь $\vec{r}=\{z,\vec{\rho}\}$.

Известно, что случайные функции (поля) можно считать эквивалентными, если их статистические моменты любого порядка совпадают, а для гауссов-

2006 Компьютерная оптика №29

ских полей достаточно равенства моментов не выше второго порядка.

В данном рассмотрении ограничимся приближенной постановкой вопроса и будем считать, что интересующие нас случайные поля $\mu(\vec{r})$ и $U(\vec{r})$ являются гауссовскими. Тогда уравнения (3) и (4) можно считать эквивалентными при выполнении следующих соотношений:

$$<\mu(\vec{r})>=<\vec{\varepsilon}(\vec{r})U(\vec{r})>;$$
 (5)

$$<\mu(\mathbf{r}_1)\mu(\mathbf{r}_2)>=<\vec{\varepsilon}(\vec{r}_1)U(\vec{r}_1)\cdot\varepsilon(\vec{r}_2)U(\vec{r}_2)>.$$
 (6)

Найдем явный вид правых частей равенства, предполагая, что корреляционная функция флуктуационной составляющей диэлектрической проницаемости задана и имеет вид

$$\langle \tilde{\varepsilon}(r_1)\tilde{\varepsilon}(\vec{r}_2) \rangle = \tilde{\varepsilon}(z_{z_1}, \vec{\rho}_1) \tilde{\varepsilon}(z_2, \vec{\rho}_2) \rangle =$$

$$= \delta(z_1 - z_2) A(z_1, \vec{\rho}_1 - \vec{\rho}_2)$$
(7)

Для дальнейших вычислений воспользуемся тем, что для гауссовского случайного поля $\varepsilon(\vec{r})$ и функционала от него $\Phi(\vec{r}, \varepsilon(\vec{r}))$ справедлива формула Фуруцу-Новикова [3]

$$<\varepsilon(\vec{r}) \Phi(\vec{r},\varepsilon(\vec{r})) > = \int d^3\vec{r}' < \varepsilon(\vec{r})\varepsilon(\vec{r}') >$$

$$<\frac{\delta\Phi(\varepsilon(\vec{r}))}{\delta\varepsilon(\vec{r}')}>,$$
 (8)

где $\frac{\delta\Phi}{\delta\varepsilon}$ - функциональная производная.

Положив в формуле Фуруцу – Новикова $\Phi=U(\vec{r})$ и принимая во внимание (7), найдем

$$<\varepsilon(\vec{r})U(\vec{r})>=\int d^2 \vec{\rho}' A(z,\vec{\rho}-\vec{\rho}')<\frac{\delta U(z,\vec{\rho})}{\delta\varepsilon(z,\vec{\rho}')}>.$$
 (9)

В работе [4] показано, что для поля, удовлетворяющего уравнению (3), выполняется соотношение

$$\frac{\delta U(z,\vec{\rho})}{\delta \varepsilon(z,\vec{\rho}')} = \frac{ik}{4} \delta(\vec{\rho} - \vec{\rho}') \cdot U(z,\vec{\rho}'), \tag{10}$$

подстановка которого в (9) дает

$$\langle \tilde{\varepsilon}(\vec{r}) \cdot U(\vec{r}) \rangle = \frac{ik}{4} A(z,0) \langle U(z, \vec{\rho}) \rangle.$$
 (11)

Среднее поле <U(z, $\vec{\rho}$)> удовлетворяет уравнению [4]

$$\left[2ik\frac{\partial}{\partial z} + \nabla_{\perp}^{2} + \frac{ik^{3}}{4}A(z,0)\right] < U(z,\vec{\rho}) > = 0. (12)$$

Решение уравнения (12) можно представить в виле

$$\langle U(z, \vec{\rho}) \rangle = U_0(z, \vec{\rho}) \exp\left[-\frac{k^2}{8} \int A(z, 0) dz\right],$$
 (13)

где <U $_0(z, \vec{\rho}>$ - поле в свободном пространстве, определяемое как решение уравнения

$$\left[2ik\frac{\partial}{\partial z} + \nabla_{\perp}^{2}\right] U_{0}(z, \vec{\rho}) = 0$$
 (14)

При определении статистического момента второго порядка (6), как отмечено выше, будем исходить из предположения о том, что поле $U(\vec{r})$ является гауссовским.

Если воспользоваться соотношением, справедливым для центрированных гауссовских случайных величин x_1, x_2, x_3, x_4 :

$$\langle x_1 x_2 x_3 x_4 \rangle = \langle x_1 x_2 \rangle \langle x_3 x_4 \rangle + \langle x_1 x_3 \rangle \langle x_2 x \rangle + \langle x_1 x_4 \langle x_2 x_3 \rangle,$$
 (15)

то для второго момента можно найти

$$<\mu(\vec{r}_{1})\cdot\mu(\vec{r}_{2})>=<\tilde{\varepsilon}(\vec{r}_{1})U(\vec{r}_{1})><\tilde{\varepsilon}(\vec{r}_{2})U^{*}(\vec{r}_{2})>+$$

$$+<\tilde{\varepsilon}(\vec{r}_{1})\tilde{\varepsilon}(\vec{r}_{2})>\times+$$

$$+<\tilde{\varepsilon}(\vec{r}_{1})U^{*}(\vec{r}_{2})><\tilde{\varepsilon}(\vec{r}_{2})U(\vec{r}_{1})>.$$
(16)

Как следует из соотношения (11), первый член выражения (16) имеет вид

$$<\varepsilon (\vec{r}_1)U(\vec{r}_1)><\varepsilon (\vec{r}_2)U(\vec{r}_2)>=<\frac{k^2}{16}A(z_1,0)*$$

$$*A(z_2,0)\times U(z_1, \vec{\rho}_1)>. \tag{17}$$

Второй член выражения (16), вследствие дельтакорелированности по координате z первого сомножителя, можно представить в форме

$$<\varepsilon \ (\vec{r_1})\varepsilon \ (\vec{r_2})>=$$

= $\delta (z_{1-2})A(z_{1}, \vec{\rho_1} - \vec{\rho_2})$ (18)

Последний сомножитель в выражения (18) представляет собой функцию когерентности. Вводя для данной функции обозначение

$$\langle U(z, \vec{\rho}_1)U^*(z, \vec{\rho}_2) \rangle = \Gamma(z, \vec{\rho}_1, \vec{\rho}_2),$$
 (19)

можно показать [4], что она удовлетворяет уравнению

$$\left\{ 2ik \frac{\partial}{\partial z} + 2 \frac{\partial^2}{\partial \vec{\rho} \partial \vec{\rho}_C} + \frac{ik^3}{2} \left(A(z,0) - A(z,\vec{\rho}) \right) \right\} \Gamma(z,\vec{\rho}_1,\vec{\rho}_2) = 0,$$
(20)

где
$$\vec{\rho} = \vec{\rho}_1 - \vec{\rho}_2$$
, $\rho_C = \frac{1}{2} (\vec{\rho}_1 + \vec{\rho}_2)$.

Решение уравнения (20) для различных физических ситуаций можно найти в работе [4].

При наблюдении звезд с помощью оптических телескопов, можно считать, что вследствие сильной удаленности звездный свет является полностью

плоской когерентной волной. В данном случае уравнение (20) будет иметь решение

$$\Gamma(z, \vec{\rho}_1, \vec{\rho}_2) = \exp\left\{-\frac{k^2}{4} \int (A(z, 0) - A(z, \vec{\rho}_1 - \vec{\rho}_2)) dz\right\}.$$
 (21)

При определении третьего члена выражения (16) примем во внимание принцип причинности. В соответствии с данным принципом поле $U(\vec{r})$ не может зависеть от последующих значений $\tilde{\varepsilon}(\vec{r})$ и, таким образом, при $z_1 < z_2$ поля $\tilde{\varepsilon}(\vec{r}_2)$ и $U(\vec{r}_1)$ будут статически независимыми, а, следовательно,

$$\langle \tilde{\varepsilon}(\vec{r}_2)U(\vec{r}_1)\rangle = \langle \tilde{\varepsilon}(\vec{r}_2)\rangle \langle U(\vec{r}_1)\rangle = 0.$$
 (22)

Аналогично в случае $z_1 < z_2$ обращается в нуль статический момент $<\tilde{\varepsilon}(\vec{r_1})U^*(\vec{r_2})>$. Таким образом, для третьего члена выражения (16) находим

$$<\tilde{\varepsilon}(\vec{r_1})U*(\vec{r_2})><\tilde{\varepsilon}(\vec{r_2})U(\vec{r_1})>=$$

 $<\tilde{\varepsilon}(z,\vec{\rho}_1)U^*(z,\vec{\rho}_2)>=$

$$=\begin{cases} 0, & npu \ z_1 < z_2, \\ < \tilde{\varepsilon}(z_1, \vec{\rho})U^*(z_1, \vec{\rho}_2) > < \tilde{\varepsilon}(z_1, \vec{\rho}_2) > z_2, npu \ z_1 = z_2; \\ 0, & npu \ z_1 > z_2. \end{cases}$$
 (23)

Воспользовавшись формулой Фуруцу-Новикова, можно найти

$$<\tilde{\varepsilon}(z_{1},\vec{\rho}_{2})U(z_{1},\vec{\rho}_{2})>=$$

$$=\frac{ik}{4}A(z,\vec{\rho}_{1}-\vec{\rho}_{2})< U(z_{1},\vec{\rho}_{1})>; \qquad (24)$$

$$<-\frac{ik}{4}A(z,\vec{\rho}_1-\vec{\rho}_2)>< U*(z_1,\vec{\rho}_2).$$
 (25)

С учетом (24) и (25) выражение (23) принимает вид

$$<\tilde{\varepsilon}(\vec{r}_{1})U^{*}(\vec{r}_{2})><\tilde{\varepsilon}(\vec{r}_{2})U(\vec{r}_{1})>=$$

$$\begin{cases}
0 \text{ npu } z_{1} < z_{2}, \\
\frac{k^{2}}{16}A^{2}(z_{1},\vec{\rho}_{1}-\vec{\rho}_{2})< U^{*}(z_{1},\vec{\rho}_{1})>< U^{*}(z_{1},\vec{\rho}_{2})> \text{ npu } z_{1} = z_{2}, \\
0 \text{ npu } z_{1} > z_{2}.
\end{cases}$$
(26)

Сравнение выражений (26) и (18) показывает, что из-за присутствия в выражении (18) дельтафункции вкладом третьего члена выражения (16) можно пренебречь. Таким образом, имеем

$$<\mu(\vec{r_1})\mu(\vec{r_2}) >= \delta(z_1 - z_2) *$$

$$* A(z_1, \vec{\rho_1} - \vec{\rho_2}) \cdot \Gamma(z_1, \vec{\rho_1}, \vec{\rho_2}) + \frac{k^2}{16} A(z_1, 0) *$$

$$A(z_2, 0) < U(z_1, \vec{\rho_1}) >< U * (z_2, \vec{\rho_2}) >, \tag{27}$$

где $\Gamma(z_1, \vec{\rho}_1, \vec{\rho}_2), \langle U(z_1, \vec{\rho}_1) \rangle, \langle U*(z_2, \vec{\rho}_2) \rangle$ определяются соответственно выражениями (21) и (13).

Оценим интегральный вклад каждого из членов выражения (27). Введем обозначения:

$$\alpha_{1} = \int_{0}^{\infty} \delta(z_{1} - z_{2}) A(z_{1}, \vec{\rho}_{1} - \vec{\rho}_{2}) \Gamma(z_{1}, \vec{\rho}_{1}, \vec{\rho}_{2}) dz;$$
 (28)

$$\alpha_2 = \int_0^\infty \frac{k^2}{16} A(z_1, 0)$$

$$A(z_2, 0) < U(z_1, \vec{\rho}_1) > < U^*(z_2, \vec{\rho}_2) > dz$$

Считая, что в турбулентной среде флуктуации показателя преломления описываются колмогоровским спектром, можно показать, что имеют место приближенные равенства [4]

$$A(z,0) - A(z_1, \vec{\rho}_1 - \vec{\rho}_2) = 5.83C_n^2(z)\rho^{5/3};$$
 (29)

$$\frac{A(z,0)k^2}{8} = 0.391C_n^2(z)k^2L^{5/3},$$
(30)

где $\rho = |\vec{\rho}_1 - \vec{\rho}_2|$, $C_n -$ структурная постоянная.

Для оценки порядков величин пренебрежем зависимостью от z структурной характеристики атмосферы $C_n(z)$; тогда, используя (29), (30), (21), (13), найдем

$$a_{1} = A(\vec{\rho}) \exp \left[-\left(\frac{\vec{\rho}}{\rho_{0}}\right) \right]; \tag{31}$$

$$a_2 = \frac{1}{2}A(0)\exp\left[-0.26\left(\frac{L_0}{\rho_0}\right)\right],$$
 (32)

где
$$\rho_0 = (1,46k^2C_n^2z)^{-5/3}$$
 – радиус когерентности [4].

Численные оценки выражений (31) и (32) показывают, что при наблюдении через атмосферу для внешнего масштаба турбулентности L_0 и радиуса когерентности ρ_0 справедливо $L_0 >> \rho_0$, и, таким образом, в существенной для корреляции области $\rho \leq \rho_0$ выполняется соотношение $a_1 >> a_2$, что позволяет пренебречь в (27) вторым членом и считать

$$<\mu(\vec{r}_1)\mu(\vec{r}_2)>=\delta(z_1-z_2)A(z_1,\vec{\rho}_1-\vec{\rho}_2)\Gamma(z,\vec{\rho}_1,\vec{\rho}_2)$$
 (33)

Произведем вычисления для модельного представления турбулентной атмосферы с помощью колмогоровского спектра. В результате распространение оптического поля в турбулентной атмосфере в рамках сделанных выше предположений может быть описано с помощью уравнения (4), стохастический член которого удовлетворяет условиям:

$$\langle \mu(r) \rangle = \frac{1k}{4} A(z,0) \exp\left(-\frac{k^2}{8} \int_0^z A(z,0) dz\right)$$

$$\langle \mu(\vec{r_1}) \mu(\vec{r_2}) \rangle = \delta(z_1 - z_2) \cdot A(z,\vec{\rho}) *$$
(34)

2006 Компьютерная оптика №29

*
$$\exp\left(-\frac{k^2}{4}\int_0^z \left(A(z,0) - A(z,\vec{\rho})dz\right)\right)$$
 (35)

где функции A(z,0) и $A(z,\vec{\rho})$ для колмогоровского спектра флуктуаций диэлектрической проницаемости определяются соотношениями (31) и (32).

Заключение

В работе предложен метод модификации параболического уравнения, описывающего распространение оптического излучения через турбулентную атмосферу, позволяющий привести данное уравнение к уравнению описывающему фильтр Калмана-Бьюси на основе соображений приближенной стохастической эквивалентности. Данный подход позволяет использовать аппарат фильтрации Калмана-Бьюси для управления адаптивными оптическими системами наблюдения.

Литература

- Солодов А.В. Методы теории систем в задаче непрерывной фильтрации // М.: Наука, 1976. 264 с.
- Дубенко Т.И. Фильтр Калмана для случайных полей // Автоматика и телемеханика, 1972. №12. С. 37-40.
- 3. Рытов С.М., Кравцов Ю.А., Татарский В.И. Введение в статистическую радиофизику // Т. 2. М.: Наука, 1978. 463 с.
- 4. Исимару А. Распространение и рассеивание волн в случайно-неоднородных средах // Т. 2. М.: Мир, 1981. 317 с.

Modification of a parabolic equation for modeling the control of adaptive optical systems

V.K. Bagmanov¹, A.K. Sultanov¹

¹Ufa State Aviation Technical University

Abstract:

A method of approximate stochastic equivalence is proposed that allows to reduce a parabolic equation describing the optical propagation in a turbulent atmosphere to a Kalman-Bucy equation. The resulting equation can be used to model control systems for adaptive optical systems based on Kalman filters

<u>Keywords</u>: Parabolic Equation, Adaptive Optical Systems, approximate stochastic equivalence, Kalman-Bucy equation, Kalman filters

<u>Citation</u>: Bagmanov VK, Sultanov AK. Modification of a Parabolic Equation for Modeling the Control of Adaptive Optical Systems. Computer Optics 2006; 29: 118-121.

References:

- [1] Solodov AV. System theory methods in the problem of continuous linear filtration [In Russian]. Moscow: "Nauka" Publisher, 1976.
- [2] Dubenko TI. The Kalman filter for random fields. Autom Remote Control 1972; 33(12): 1945-1949.
- [3] Rytov SM, Kravtsov YuA, Tatarskii VI. Principles of statistical radiophysics 3: Elements of random fields. Berlin, Heidelberg: Springer-Verlag; 1989. ISBN: 978-3-642-72687-3.
- [4] Ishimary A. Wave propagation and scattering in random media. Vol 2: Multiple scattering, turbulence, rough surfaces, and remote-sensing. London: Academic Press Inc; 1978. ISBN: 978-0-12-374702-0.