(44-2) 09 * << * >> * Russian * English * Content * All Issues

Designing multilayer dielectric filter based on TiO2/SiO2 for fluorescence microscopy applications

Hanh Hong Mai  1

Faculty of Physics, VNU University of Science,

334 Nguyen Trai, Hanoi, Vietnam

 PDF, 996 kB

DOI: 10.18287/2412-6179-CO-618

Pages: 209-213.

Full text of article: English language.

This study presents a new construction design of a distributed Bragg reflector (DBR) filter and a Fabry–Pérot (FP) filter by using needle technique as a synthesis method. The optimized DBR and FP filters having a proper number of layers with controlling thickness TiO2/SiO2 are utilized to transmit only a certain narrow band of wavelengths while blocking the others. As a proof of concept, the filters are designed to selectively transmit only a very narrow band of wavelength at 780 nm which is the near infrared (NIR) fluorescent emission from Alexa Fluor 750 dye. The obtained results show that the optimized filters represent advanced spectral performance which can be used to improve the sensitivity and the imaging contrast in fluorescence microscopy.

Bragg reflectors, DBR filter, Fabry–Perot, Fabry–Pérot filter, thin film, thin film deposition, Needle method.

Mai HH. Designing multilayer dielectric filter based on TiO2/SiO2 for fluorescence microscopy applications. Computer Optics 2020; 44(2): 209-213. DOI: 10.18287/2412-6179-CO-618.

This research was supported by the International Centre for Genetic Engineering and Biotechnology (ICGEB) through a grant to Dr. Hanh Hong Mai. Grant NO. CRP/VNM17-03.


  1. Matsunaga T, Okochi M, Nakasono S. Direct count of bacteria using fluorescent dyes: Application to assessment of electrochemical disinfection. Anal Chem 1995; 67: 4487-4490. DOI: 10.1021/ac00120a010.
  2. Yuan L, Lin W, Yang Y, Chen H. A unique class of near-infrared functional fluorescent dyes with carboxylic-acid-modulated fluorescence ON/OFF switching: Rational design, synthesis, optical properties, theoretical calculations, and applications for fluorescence imaging in living animals. J Am Chem Soc 2012; 134: 1200-1211. DOI: 10.1021/ja209292b.
  3. Invitrogen. Alexa fluor® dyes: Simply the best and brightest fluorescent dyes and conjugates. Molecular Probes Inc; 2005: 1-36.
  4. Oliveira E, Bértolo E, Núñez C, Pilla V, Santos HM, Fernández-Lodeiro J, et al. Green and red fluorescent dyes for translational applications in imaging and sensing analytes: A dual-color flag. ChemistryOpen 2018; 7(1): 9-52. DOI: 10.1002/open.201700135.
  5. Young MR. Principles and technique of fluorescence microscopy. J Cell Sci 1961; s3-102: 419-449.
  6. Drummen GPC. Fluorescent probes and fluorescence (microscopy) techniques – Illuminating biological and biomedical research. Molecules 2012; 17: 14067-14090. DOI: 10.3390/molecules171214067.
  7. Ettinger A, Wittmann T. Fluorescence live cell imaging. In Book: Waters JC, Wittman T, eds. Quantitative imaging in cell biology. Vol. 123. Ch 5. Academic Press; 2014: 77-94. DOI: 10.1016/B978-0-12-420138-5.00005-7.
  8. Thorn K, Kellogg D. A quick guide to light microscopy in cell biology. Mol Biol Cell 2016; 27: 219-222. DOI: 10.1091/mbc.e15-02-0088.
  9. MacLeod HA. Thin-film optical filters. 4th ed. Taylor & Francis Book; 2010. ISBN: 978-1-4200-7302-7.
  10. Marthinsen H. Numerical methods for optical interference filters. Norwegian University of Science and Technology; 2009.
  11. Habib M, Ullah A. Simulation of near Infrared interference bandpass filters for spectroscopic applications. 2016 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube) 2016: 234-238. DOI: 10.1109/ICECUBE.2016.7495230.
  12. Nazar A, Ali AH, Jasem NA. New construction stacks for optimization designs of edge filter. IOSR J Appl Phys 2016; 8(3:II): 20-26. DOI: 10.9790/4861-0803022026.
  13. Nazar A. Design optical filters using two different synthesis approaches. Journal of Kufa – physics 2011; 3(1): 45-58.
  14. de Denus-Baillargeon M-M, Abel-Tibérini L, Lequime M, Carignan C, Épinat B, Gach J-L, et al. Developing high-performance reflective coatings for the tunable filter and the high-order interferometer of the 3D-NTT. Soc Photo-Optical Instrum Eng Conf Ser 2008; 7013: 111. DOI: 10.1117/12.789498.
  15. Butt MA, Fomchenkov SA, Khonina SN. Dielectric-Metal-Dielectric (D-M-D) infrared (IR) heat reflectors. J Phys Conf Ser 2017; 917: 62007. DOI: 10.1088/1742-6596/917/6/062007.
  16. de Denus-Baillargeon M-M, Schmitt T, Larouche S, Martinu L. Design and fabrication of stress-compensated optical coatings: Fabry–Perot filters for astronomical applications. Appl Opt 2014; 53(12): 2616-2624. DOI: 10.1364/AO.53.002616.
  17. Butt MA, Strelkov YuS. An approach to developing a Fabry-Perot filter by a single fabrication step for gas sensing applications. Proc SPIE 2018; 10774: 107740P. DOI: 10.1117/12.2316482.
  18. Butt MA, Khonina SN, Kazanskiy NL. Numerical analysis of a miniaturized design of a Fabry–Perot resonator based on silicon strip and slot waveguides for bio-sensing applications. J Mod Opt 2019; 66(11): 1172-1178. DOI: 10.1080/09500340.2019.1609613.
  19. Butt MA, Khonina SN, Kazanskiy NL. Label-free detection of ambient refractive index based on plasmonic Bragg gratings embedded resonator cavity sensor. J Mod Opt 2019; 66(19): 1920-1925. DOI: 10.1080/09500340.2019.1683633.
  20. Butt MA, Fomchenkov SA, Ullah A, Habib M, Ali RZ. Modelling of multilayer dielectric filters based on TiO2/SiO2 and TiO2/MgF2 for fluorescence microscopy imaging. Computer Optics 2016; 40(5): 674-678. DOI: 10.18287/2412-6179-2016-40-5-674-678.
  21. Butt MA, Fomchenkov SA, Ullah A, Verma P, Khonina SN. Biomedical bandpass filter for fluorescence microscopy imaging based on TiO2/SiO2 and TiO2/MgF2 dielectric multilayers. J Phys Conf Ser 2016; 741: 012136. DOI: 10.1088/1742-6596/741/1/012136.
  22. Butt MA, Fomchenkov SA, Khonina SN. Multilayer dielectric stack notch filter for 450-700 nm wavelength spectrum. CEUR Workshop Proceedings 2017; 1900: 1-4. DOI: 10.18287/1613-0073-2017-1900-1-4.
  23. Nazar A. Open Filters: For optimum design wideband ARC’s at oblique incidence of light and effect dispersion of material coating. Journal of College of Education 2012; 2: 760-773.
  24. Tikhonravov AV, Trubetskov MK, DeBell GW. Application of the needle optimization technique to the design of optical coatings. Appl Opt 1996; 35: 5493-5508. DOI: 10.1364/AO.35.005493.
  25. Larouche S, Martinu L. OpenFilters: open-source software for the design, optimization, and synthesis of optical filters. Appl Opt 2008; 47: C219. DOI: 10.1364/AO.47.00C219.
  26. Tang H, Gao J, Zhang J, Wang X, Fu X. Preparation and spectrum characterization of a high quality linear variable filter. Coatings 2018; 8: 308. DOI: 10.3390/coatings8090308.
  27. Jen Y-J, Lin M-J. Design and fabrication of a narrow bandpass filter with low dependence on angle of incidence. Coatings 2018; 8: 231. DOI: 10.3390/coatings8070231.
  28. Sta I, Jlassi M, Hajji M, Boujmil MF, Jerbi R, Kandyla M, et al. Structural and optical properties of TiO2 thin films prepared by spin coating. J Sol-Gel Sci Technol 2014; 72(2): 421-427. DOI: 10.1007/s10971-014-3452-z.


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20